Spaces:
Running
Running
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import evaluate | |
import datasets | |
import motmetrics as mm | |
from motmetrics.metrics import (events_to_df_map, | |
obj_frequencies, | |
track_ratios) | |
import numpy as np | |
_CITATION = """\ | |
@InProceedings{huggingface:module, | |
title = {A great new module}, | |
authors={huggingface, Inc.}, | |
year={2020} | |
}\ | |
@article{milan2016mot16, | |
title={MOT16: A benchmark for multi-object tracking}, | |
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad}, | |
journal={arXiv preprint arXiv:1603.00831}, | |
year={2016} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The MOT Metrics module is designed to evaluate multi-object tracking (MOT) | |
algorithms by computing various metrics based on predicted and ground truth bounding | |
boxes. It serves as a crucial tool in assessing the performance of MOT systems, | |
aiding in the iterative improvement of tracking algorithms.""" | |
_KWARGS_DESCRIPTION = """ | |
Calculates how good are predictions given some references, using certain scores | |
Args: | |
predictions: list of predictions to score. Each predictions | |
should be a string with tokens separated by spaces. | |
references: list of reference for each prediction. Each | |
reference should be a string with tokens separated by spaces. | |
max_iou (`float`, *optional*): | |
If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive. | |
Default is 0.5. | |
""" | |
class UserFriendlyMetrics(evaluate.Metric): | |
"""TODO: Short description of my evaluation module.""" | |
def _info(self): | |
# TODO: Specifies the evaluate.EvaluationModuleInfo object | |
return evaluate.MetricInfo( | |
# This is the description that will appear on the modules page. | |
module_type="metric", | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
# This defines the format of each prediction and reference | |
features=datasets.Features({ | |
"predictions": datasets.Sequence( | |
datasets.Sequence(datasets.Value("float")) | |
), | |
"references": datasets.Sequence( | |
datasets.Sequence(datasets.Value("float")) | |
) | |
}), | |
# Additional links to the codebase or references | |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"], | |
reference_urls=["http://path.to.reference.url/new_module"] | |
) | |
def _download_and_prepare(self, dl_manager): | |
"""Optional: download external resources useful to compute the scores""" | |
# TODO: Download external resources if needed | |
pass | |
def _compute(self, | |
payload, | |
max_iou: float = 0.5, | |
filters = {}, | |
recognition_thresholds = [0.3, 0.5, 0.8], | |
debug: bool = False): | |
"""Returns the scores""" | |
# TODO: Compute the different scores of the module | |
return calculate_from_payload(payload, max_iou, filters, recognition_thresholds, debug) | |
#return calculate(predictions, references, max_iou) | |
def recognition(track_ratios, th = 0.5): | |
"""Number of objects tracked for at least 20 percent of lifespan.""" | |
return track_ratios[track_ratios >= th].count() | |
def num_gt_ids(df): | |
"""Number of unique gt ids.""" | |
return df.full["OId"].dropna().unique().shape[0] | |
def calculate(predictions, | |
references, | |
max_iou: float = 0.5, | |
recognition_thresholds: list = [0.3, 0.5, 0.8] | |
): | |
"""Returns the scores""" | |
try: | |
np_predictions = np.array(predictions) | |
except: | |
raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]") | |
try: | |
np_references = np.array(references) | |
except: | |
raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]") | |
if np_predictions.shape[1] != 7: | |
raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]") | |
if np_references.shape[1] != 6: | |
raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]") | |
if np_predictions[:, 0].min() <= 0: | |
raise ValueError("The frame number in the predictions should be a positive integer") | |
if np_references[:, 0].min() <= 0: | |
raise ValueError("The frame number in the references should be a positive integer") | |
num_frames = int(max(np_references[:, 0].max(), np_predictions[:, 0].max())) | |
acc = mm.MOTAccumulator(auto_id=True) | |
for i in range(1, num_frames+1): | |
preds = np_predictions[np_predictions[:, 0] == i, 1:6] | |
refs = np_references[np_references[:, 0] == i, 1:6] | |
C = mm.distances.iou_matrix(refs[:,1:], preds[:,1:], max_iou = max_iou) | |
acc.update(refs[:,0].astype('int').tolist(), preds[:,0].astype('int').tolist(), C) | |
mh = mm.metrics.create() | |
summary = mh.compute(acc, metrics=['num_misses', 'num_false_positives', 'num_detections']).to_dict() | |
df = events_to_df_map(acc.events) | |
tr_ratios = track_ratios(df, obj_frequencies(df)) | |
unique_gt_ids = num_gt_ids(df) | |
namemap = {"num_misses": "fn", | |
"num_false_positives": "fp", | |
"num_detections": "tp"} | |
for key in list(summary.keys()): | |
if key in namemap: | |
summary[namemap[key]] = float(summary[key][0]) | |
summary.pop(key) | |
else: | |
summary[key] = float(summary[key][0]) | |
summary["num_gt_ids"] = unique_gt_ids | |
for th in recognition_thresholds: | |
recognized = recognition(tr_ratios, th) | |
summary[f'recognized_{th}'] = int(recognized) | |
return summary | |
def build_metrics_template(models, filters): | |
metrics_dict = {} | |
for model in models: | |
metrics_dict[model] = {} | |
metrics_dict[model]["all"] = {} | |
for filter, filter_ranges in filters.items(): | |
metrics_dict[model][filter] = {} | |
for filter_range in filter_ranges: | |
filter_range_name = filter_range[0] | |
metrics_dict[model][filter][filter_range_name] = {} | |
return metrics_dict | |
def calculate_from_payload(payload: dict, | |
max_iou: float = 0.5, | |
filters = {}, | |
recognition_thresholds = [0.3, 0.5, 0.8], | |
debug: bool = False): | |
if not isinstance(payload, dict): | |
try: | |
payload = payload.to_dict() | |
except Exception as e: | |
raise ValueError( | |
"The payload should be a dictionary or a compatible object" | |
) from e | |
gt_field_name = payload['gt_field_name'] | |
models = payload['models'] | |
sequence_list = payload['sequence_list'] | |
if debug: | |
print("gt_field_name: ", gt_field_name) | |
print("models: ", models) | |
print("sequence_list: ", sequence_list) | |
metrics_per_sequence = {} | |
metrics_global = build_metrics_template(models, filters) | |
for sequence in sequence_list: | |
metrics_per_sequence[sequence] = {} | |
frames = payload['sequences'][sequence][gt_field_name] | |
all_formated_references = {"all": []} | |
for filter, filter_ranges in filters.items(): | |
all_formated_references[filter] = {} | |
for filter_range in filter_ranges: | |
filter_range_name = filter_range[0] | |
all_formated_references[filter][filter_range_name] = [] | |
for frame_id, frame in enumerate(frames): | |
for detection in frame: | |
index = detection['index'] | |
x, y, w, h = detection['bounding_box'] | |
all_formated_references["all"].append([frame_id+1, index, x, y, w, h]) | |
for filter, filter_ranges in filters.items(): | |
filter_value = detection[filter] | |
for filter_range in filter_ranges: | |
filter_range_name, filter_range_limits = filter_range[0], filter_range[1] | |
if filter_value >= filter_range_limits[0] and filter_value <= filter_range_limits[1]: | |
all_formated_references[filter][filter_range_name].append([frame_id+1, index, x, y, w, h]) | |
metrics_per_sequence[sequence] = build_metrics_template(models, filters) | |
for model in models: | |
frames = payload['sequences'][sequence][model] | |
formated_predictions = [] | |
for frame_id, frame in enumerate(frames): | |
for detection in frame: | |
index = detection['index'] | |
x, y, w, h = detection['bounding_box'] | |
confidence = 1 | |
formated_predictions.append([frame_id+1, index, x, y, w, h, confidence]) | |
if debug: | |
print("sequence/model: ", sequence, model) | |
print("formated_predictions: ", formated_predictions) | |
print("formated_references: ", all_formated_references) | |
if len(formated_predictions) == 0: | |
metrics_per_sequence[sequence][model] = "Model had no predictions." | |
elif len(all_formated_references["all"]) == 0: | |
metrics_per_sequence[sequence][model] = "No ground truth." | |
else: | |
sequence_metrics = calculate(formated_predictions, all_formated_references["all"], max_iou=max_iou, recognition_thresholds = recognition_thresholds) | |
sequence_metrics = realize_metrics(sequence_metrics, recognition_thresholds) | |
metrics_per_sequence[sequence][model]["all"] = sequence_metrics | |
metrics_global[model]["all"] = sum_dicts(metrics_global[model]["all"], sequence_metrics) | |
metrics_global[model]["all"] = realize_metrics(metrics_global[model]["all"], recognition_thresholds) | |
for filter, filter_ranges in filters.items(): | |
for filter_range in filter_ranges: | |
filter_range_name = filter_range[0] | |
sequence_metrics = calculate(formated_predictions, all_formated_references[filter][filter_range_name], max_iou=max_iou, recognition_thresholds = recognition_thresholds) | |
sequence_metrics = realize_metrics(sequence_metrics, recognition_thresholds) | |
metrics_per_sequence[sequence][model][filter][filter_range_name] = sequence_metrics | |
metrics_global[model][filter][filter_range_name] = sum_dicts(metrics_global[model][filter][filter_range_name], sequence_metrics) | |
metrics_global[model][filter][filter_range_name] = realize_metrics(metrics_global[model][filter][filter_range_name], recognition_thresholds) | |
output = {"global": metrics_global, "per_sequence": metrics_per_sequence} | |
return output | |
def sum_dicts(dict1, dict2): | |
""" | |
Recursively sums the numerical values in two nested dictionaries. | |
""" | |
result = {} | |
for key in dict1.keys() | dict2.keys(): # Union of keys from both dictionaries | |
val1 = dict1.get(key, 0) | |
val2 = dict2.get(key, 0) | |
if isinstance(val1, dict) and isinstance(val2, dict): | |
# If both values are dictionaries, recursively sum them | |
result[key] = sum_dicts(val1, val2) | |
elif isinstance(val1, (int, float)) and isinstance(val2, (int, float)): | |
# If both are numbers, sum them | |
result[key] = val1 + val2 | |
else: | |
# If only one dictionary has the key, take the non-zero value | |
result[key] = val1 if val1 != 0 else val2 | |
return result | |
def realize_metrics(metrics_dict, | |
recognition_thresholds): | |
""" | |
calculates metrics based on raw metrics | |
""" | |
metrics_dict["precision"] = metrics_dict["tp"]/(metrics_dict["tp"]+metrics_dict["fp"]) | |
metrics_dict["recall"] = metrics_dict["tp"]/(metrics_dict["tp"]+metrics_dict["fn"]) | |
metrics_dict["f1"] = 2*metrics_dict["precision"]*metrics_dict["recall"]/(metrics_dict["precision"]+metrics_dict["recall"]) | |
for th in recognition_thresholds: | |
metrics_dict[f"recognition_{th}"] = metrics_dict[f"recognized_{th}"]/metrics_dict["num_gt_ids"] | |
return metrics_dict | |