user-friendly-metrics / user-friendly-metrics.py
Gil-Simas's picture
remove tests
ece64b1
raw
history blame
13.6 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import evaluate
import datasets
import motmetrics as mm
from motmetrics.metrics import (events_to_df_map,
obj_frequencies,
track_ratios)
import numpy as np
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}\
@article{milan2016mot16,
title={MOT16: A benchmark for multi-object tracking},
author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
journal={arXiv preprint arXiv:1603.00831},
year={2016}
}
"""
_DESCRIPTION = """\
The MOT Metrics module is designed to evaluate multi-object tracking (MOT)
algorithms by computing various metrics based on predicted and ground truth bounding
boxes. It serves as a crucial tool in assessing the performance of MOT systems,
aiding in the iterative improvement of tracking algorithms."""
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of predictions to score. Each predictions
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
max_iou (`float`, *optional*):
If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
Default is 0.5.
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class UserFriendlyMetrics(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
"predictions": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("float"))
)
}),
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
# TODO: Download external resources if needed
pass
def _compute(self,
payload,
max_iou: float = 0.5,
filters = {},
recognition_thresholds = [0.3, 0.5, 0.8],
debug: bool = False):
"""Returns the scores"""
# TODO: Compute the different scores of the module
return calculate_from_payload(payload, max_iou, filters, recognition_thresholds, debug)
#return calculate(predictions, references, max_iou)
def recognition(track_ratios, th = 0.5):
"""Number of objects tracked for at least 20 percent of lifespan."""
return track_ratios[track_ratios >= th].count()
def num_gt_ids(df):
"""Number of unique gt ids."""
return df.full["OId"].dropna().unique().shape[0]
def calculate(predictions,
references,
max_iou: float = 0.5,
recognition_thresholds: list = [0.3, 0.5, 0.8]
):
"""Returns the scores"""
try:
np_predictions = np.array(predictions)
except:
raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
try:
np_references = np.array(references)
except:
raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
if np_predictions.shape[1] != 7:
raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
if np_references.shape[1] != 6:
raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
if np_predictions[:, 0].min() <= 0:
raise ValueError("The frame number in the predictions should be a positive integer")
if np_references[:, 0].min() <= 0:
raise ValueError("The frame number in the references should be a positive integer")
num_frames = int(max(np_references[:, 0].max(), np_predictions[:, 0].max()))
acc = mm.MOTAccumulator(auto_id=True)
for i in range(1, num_frames+1):
preds = np_predictions[np_predictions[:, 0] == i, 1:6]
refs = np_references[np_references[:, 0] == i, 1:6]
C = mm.distances.iou_matrix(refs[:,1:], preds[:,1:], max_iou = max_iou)
acc.update(refs[:,0].astype('int').tolist(), preds[:,0].astype('int').tolist(), C)
mh = mm.metrics.create()
summary = mh.compute(acc, metrics=['num_misses', 'num_false_positives', 'num_detections']).to_dict()
df = events_to_df_map(acc.events)
tr_ratios = track_ratios(df, obj_frequencies(df))
unique_gt_ids = num_gt_ids(df)
namemap = {"num_misses": "fn",
"num_false_positives": "fp",
"num_detections": "tp"}
for key in list(summary.keys()):
if key in namemap:
summary[namemap[key]] = float(summary[key][0])
summary.pop(key)
else:
summary[key] = float(summary[key][0])
summary["num_gt_ids"] = unique_gt_ids
for th in recognition_thresholds:
recognized = recognition(tr_ratios, th)
summary[f'recognized_{th}'] = int(recognized)
return summary
def build_metrics_template(models, filters):
metrics_dict = {}
for model in models:
metrics_dict[model] = {}
metrics_dict[model]["all"] = {}
for filter, filter_ranges in filters.items():
metrics_dict[model][filter] = {}
for filter_range in filter_ranges:
filter_range_name = filter_range[0]
metrics_dict[model][filter][filter_range_name] = {}
return metrics_dict
def calculate_from_payload(payload: dict,
max_iou: float = 0.5,
filters = {},
recognition_thresholds = [0.3, 0.5, 0.8],
debug: bool = False):
if not isinstance(payload, dict):
try:
payload = payload.to_dict()
except Exception as e:
raise ValueError(
"The payload should be a dictionary or a compatible object"
) from e
gt_field_name = payload['gt_field_name']
models = payload['models']
sequence_list = payload['sequence_list']
if debug:
print("gt_field_name: ", gt_field_name)
print("models: ", models)
print("sequence_list: ", sequence_list)
metrics_per_sequence = {}
metrics_global = build_metrics_template(models, filters)
for sequence in sequence_list:
metrics_per_sequence[sequence] = {}
frames = payload['sequences'][sequence][gt_field_name]
all_formated_references = {"all": []}
for filter, filter_ranges in filters.items():
all_formated_references[filter] = {}
for filter_range in filter_ranges:
filter_range_name = filter_range[0]
all_formated_references[filter][filter_range_name] = []
for frame_id, frame in enumerate(frames):
for detection in frame:
index = detection['index']
x, y, w, h = detection['bounding_box']
all_formated_references["all"].append([frame_id+1, index, x, y, w, h])
for filter, filter_ranges in filters.items():
filter_value = detection[filter]
for filter_range in filter_ranges:
filter_range_name, filter_range_limits = filter_range[0], filter_range[1]
if filter_value >= filter_range_limits[0] and filter_value <= filter_range_limits[1]:
all_formated_references[filter][filter_range_name].append([frame_id+1, index, x, y, w, h])
metrics_per_sequence[sequence] = build_metrics_template(models, filters)
for model in models:
frames = payload['sequences'][sequence][model]
formated_predictions = []
for frame_id, frame in enumerate(frames):
for detection in frame:
index = detection['index']
x, y, w, h = detection['bounding_box']
confidence = 1
formated_predictions.append([frame_id+1, index, x, y, w, h, confidence])
if debug:
print("sequence/model: ", sequence, model)
print("formated_predictions: ", formated_predictions)
print("formated_references: ", all_formated_references)
if len(formated_predictions) == 0:
metrics_per_sequence[sequence][model] = "Model had no predictions."
elif len(all_formated_references["all"]) == 0:
metrics_per_sequence[sequence][model] = "No ground truth."
else:
sequence_metrics = calculate(formated_predictions, all_formated_references["all"], max_iou=max_iou, recognition_thresholds = recognition_thresholds)
sequence_metrics = realize_metrics(sequence_metrics, recognition_thresholds)
metrics_per_sequence[sequence][model]["all"] = sequence_metrics
metrics_global[model]["all"] = sum_dicts(metrics_global[model]["all"], sequence_metrics)
metrics_global[model]["all"] = realize_metrics(metrics_global[model]["all"], recognition_thresholds)
for filter, filter_ranges in filters.items():
for filter_range in filter_ranges:
filter_range_name = filter_range[0]
sequence_metrics = calculate(formated_predictions, all_formated_references[filter][filter_range_name], max_iou=max_iou, recognition_thresholds = recognition_thresholds)
sequence_metrics = realize_metrics(sequence_metrics, recognition_thresholds)
metrics_per_sequence[sequence][model][filter][filter_range_name] = sequence_metrics
metrics_global[model][filter][filter_range_name] = sum_dicts(metrics_global[model][filter][filter_range_name], sequence_metrics)
metrics_global[model][filter][filter_range_name] = realize_metrics(metrics_global[model][filter][filter_range_name], recognition_thresholds)
output = {"global": metrics_global, "per_sequence": metrics_per_sequence}
return output
def sum_dicts(dict1, dict2):
"""
Recursively sums the numerical values in two nested dictionaries.
"""
result = {}
for key in dict1.keys() | dict2.keys(): # Union of keys from both dictionaries
val1 = dict1.get(key, 0)
val2 = dict2.get(key, 0)
if isinstance(val1, dict) and isinstance(val2, dict):
# If both values are dictionaries, recursively sum them
result[key] = sum_dicts(val1, val2)
elif isinstance(val1, (int, float)) and isinstance(val2, (int, float)):
# If both are numbers, sum them
result[key] = val1 + val2
else:
# If only one dictionary has the key, take the non-zero value
result[key] = val1 if val1 != 0 else val2
return result
def realize_metrics(metrics_dict,
recognition_thresholds):
"""
calculates metrics based on raw metrics
"""
metrics_dict["precision"] = metrics_dict["tp"]/(metrics_dict["tp"]+metrics_dict["fp"])
metrics_dict["recall"] = metrics_dict["tp"]/(metrics_dict["tp"]+metrics_dict["fn"])
metrics_dict["f1"] = 2*metrics_dict["precision"]*metrics_dict["recall"]/(metrics_dict["precision"]+metrics_dict["recall"])
for th in recognition_thresholds:
metrics_dict[f"recognition_{th}"] = metrics_dict[f"recognized_{th}"]/metrics_dict["num_gt_ids"]
return metrics_dict