Spaces:
Sleeping
Sleeping
updatre readme
Browse files
README.md
CHANGED
@@ -31,27 +31,127 @@ title: mot-metrics
|
|
31 |
>>> module = evaluate.load("SEA-AI/user-friendly-metrics")
|
32 |
>>> res = module._calculate(b, max_iou=0.99, recognition_thresholds=[0.3, 0.5, 0.8])
|
33 |
>>> print(res)
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
```
|
56 |
|
57 |
## Metric Settings
|
@@ -64,22 +164,19 @@ The output is a dictionary containing the following metrics:
|
|
64 |
|
65 |
| Name | Description |
|
66 |
| :------------------- | :--------------------------------------------------------------------------------- |
|
67 |
-
| idf1 | ID measures: global min-cost F1 score. |
|
68 |
-
| idp | ID measures: global min-cost precision. |
|
69 |
-
| idr | ID measures: global min-cost recall. |
|
70 |
| recall | Number of detections over number of objects. |
|
71 |
| precision | Number of detected objects over sum of detected and false positives. |
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
|
84 |
## Citations
|
85 |
|
|
|
31 |
>>> module = evaluate.load("SEA-AI/user-friendly-metrics")
|
32 |
>>> res = module._calculate(b, max_iou=0.99, recognition_thresholds=[0.3, 0.5, 0.8])
|
33 |
>>> print(res)
|
34 |
+
```
|
35 |
+
```
|
36 |
+
global:
|
37 |
+
ahoy-IR-b2-whales__XAVIER-AGX-JP46_TRACKER:
|
38 |
+
all:
|
39 |
+
f1: 0.8262651742077881
|
40 |
+
fn: 2045.0
|
41 |
+
fp: 159.0
|
42 |
+
num_gt_ids: 13
|
43 |
+
precision: 0.9705555555555555
|
44 |
+
recall: 0.7193247323634367
|
45 |
+
recognition_0.3: 0.9230769230769231
|
46 |
+
recognition_0.5: 0.8461538461538461
|
47 |
+
recognition_0.8: 0.46153846153846156
|
48 |
+
recognized_0.3: 12
|
49 |
+
recognized_0.5: 11
|
50 |
+
recognized_0.8: 6
|
51 |
+
tp: 5241.0
|
52 |
+
area:
|
53 |
+
large:
|
54 |
+
f1: 0.4053050397877984
|
55 |
+
fn: 612.0
|
56 |
+
fp: 3872.0
|
57 |
+
num_gt_ids: 6
|
58 |
+
precision: 0.28296296296296297
|
59 |
+
recall: 0.7140186915887851
|
60 |
+
recognition_0.3: 0.8333333333333334
|
61 |
+
recognition_0.5: 0.8333333333333334
|
62 |
+
recognition_0.8: 0.3333333333333333
|
63 |
+
recognized_0.3: 5
|
64 |
+
recognized_0.5: 5
|
65 |
+
recognized_0.8: 2
|
66 |
+
tp: 1528.0
|
67 |
+
medium:
|
68 |
+
f1: 0.7398209644816635
|
69 |
+
fn: 1146.0
|
70 |
+
fp: 1557.0
|
71 |
+
num_gt_ids: 10
|
72 |
+
precision: 0.7116666666666667
|
73 |
+
recall: 0.7702946482260974
|
74 |
+
recognition_0.3: 1.0
|
75 |
+
recognition_0.5: 0.8
|
76 |
+
recognition_0.8: 0.6
|
77 |
+
recognized_0.3: 10
|
78 |
+
recognized_0.5: 8
|
79 |
+
recognized_0.8: 6
|
80 |
+
tp: 3843.0
|
81 |
+
small:
|
82 |
+
f1: 0.10373582388258838
|
83 |
+
fn: 285.0
|
84 |
+
fp: 5089.0
|
85 |
+
num_gt_ids: 6
|
86 |
+
precision: 0.05759259259259259
|
87 |
+
recall: 0.5218120805369127
|
88 |
+
recognition_0.3: 0.3333333333333333
|
89 |
+
recognition_0.5: 0.3333333333333333
|
90 |
+
recognition_0.8: 0.16666666666666666
|
91 |
+
recognized_0.3: 2
|
92 |
+
recognized_0.5: 2
|
93 |
+
recognized_0.8: 1
|
94 |
+
tp: 311.0
|
95 |
+
per_sequence:
|
96 |
+
Sentry_2022_12_19_Romania_2022_12_19_17_09_34:
|
97 |
+
ahoy-IR-b2-whales__XAVIER-AGX-JP46_TRACKER:
|
98 |
+
all:
|
99 |
+
f1: 0.8262651742077881
|
100 |
+
fn: 2045.0
|
101 |
+
fp: 159.0
|
102 |
+
num_gt_ids: 13
|
103 |
+
precision: 0.9705555555555555
|
104 |
+
recall: 0.7193247323634367
|
105 |
+
recognition_0.3: 0.9230769230769231
|
106 |
+
recognition_0.5: 0.8461538461538461
|
107 |
+
recognition_0.8: 0.46153846153846156
|
108 |
+
recognized_0.3: 12
|
109 |
+
recognized_0.5: 11
|
110 |
+
recognized_0.8: 6
|
111 |
+
tp: 5241.0
|
112 |
+
area:
|
113 |
+
large:
|
114 |
+
f1: 0.4053050397877984
|
115 |
+
fn: 612.0
|
116 |
+
fp: 3872.0
|
117 |
+
num_gt_ids: 6
|
118 |
+
precision: 0.28296296296296297
|
119 |
+
recall: 0.7140186915887851
|
120 |
+
recognition_0.3: 0.8333333333333334
|
121 |
+
recognition_0.5: 0.8333333333333334
|
122 |
+
recognition_0.8: 0.3333333333333333
|
123 |
+
recognized_0.3: 5
|
124 |
+
recognized_0.5: 5
|
125 |
+
recognized_0.8: 2
|
126 |
+
tp: 1528.0
|
127 |
+
medium:
|
128 |
+
f1: 0.7398209644816635
|
129 |
+
fn: 1146.0
|
130 |
+
fp: 1557.0
|
131 |
+
num_gt_ids: 10
|
132 |
+
precision: 0.7116666666666667
|
133 |
+
recall: 0.7702946482260974
|
134 |
+
recognition_0.3: 1.0
|
135 |
+
recognition_0.5: 0.8
|
136 |
+
recognition_0.8: 0.6
|
137 |
+
recognized_0.3: 10
|
138 |
+
recognized_0.5: 8
|
139 |
+
recognized_0.8: 6
|
140 |
+
tp: 3843.0
|
141 |
+
small:
|
142 |
+
f1: 0.10373582388258838
|
143 |
+
fn: 285.0
|
144 |
+
fp: 5089.0
|
145 |
+
num_gt_ids: 6
|
146 |
+
precision: 0.05759259259259259
|
147 |
+
recall: 0.5218120805369127
|
148 |
+
recognition_0.3: 0.3333333333333333
|
149 |
+
recognition_0.5: 0.3333333333333333
|
150 |
+
recognition_0.8: 0.16666666666666666
|
151 |
+
recognized_0.3: 2
|
152 |
+
recognized_0.5: 2
|
153 |
+
recognized_0.8: 1
|
154 |
+
tp: 311.0
|
155 |
```
|
156 |
|
157 |
## Metric Settings
|
|
|
164 |
|
165 |
| Name | Description |
|
166 |
| :------------------- | :--------------------------------------------------------------------------------- |
|
|
|
|
|
|
|
167 |
| recall | Number of detections over number of objects. |
|
168 |
| precision | Number of detected objects over sum of detected and false positives. |
|
169 |
+
| f1 | F1 score |
|
170 |
+
| num_gt_ids | Number of unique objects on the ground truth |
|
171 |
+
| fn | Number of false negatives |
|
172 |
+
| fp | Number of of false postives |
|
173 |
+
| tp | number of true positives |
|
174 |
+
| recognized_th | Total number of unique objects on the ground truth that were seen more then th% of the times |
|
175 |
+
| recognition_th | Total number of unique objects on the ground truth that were seen more then th% of the times over the number of unique objects on the ground truth|
|
176 |
+
|
177 |
+
## How it Works
|
178 |
+
|
179 |
+
We levereage one of the internal variables of motmetrics ```MOTAccumulator``` class, ```events```, which keeps track of the detections hits and misses. These values are then processed via the ```track_ratios``` function which counts the ratio of assigned to total appearance count per unique object id. We then define the ```recognition``` function that counts how many objects have been seen more times then the desired threshold.
|
180 |
|
181 |
## Citations
|
182 |
|