# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import evaluate import datasets import motmetrics as mm from motmetrics.metrics import (events_to_df_map, obj_frequencies, track_ratios) import numpy as np _CITATION = """\ @InProceedings{huggingface:module, title = {A great new module}, authors={huggingface, Inc.}, year={2020} }\ @article{milan2016mot16, title={MOT16: A benchmark for multi-object tracking}, author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad}, journal={arXiv preprint arXiv:1603.00831}, year={2016} } """ _DESCRIPTION = """\ The MOT Metrics module is designed to evaluate multi-object tracking (MOT) algorithms by computing various metrics based on predicted and ground truth bounding boxes. It serves as a crucial tool in assessing the performance of MOT systems, aiding in the iterative improvement of tracking algorithms.""" _KWARGS_DESCRIPTION = """ Calculates how good are predictions given some references, using certain scores Args: predictions: list of predictions to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. max_iou (`float`, *optional*): If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive. Default is 0.5. """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class UserFriendlyMetrics(evaluate.Metric): """TODO: Short description of my evaluation module.""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=datasets.Features({ "predictions": datasets.Sequence( datasets.Sequence(datasets.Value("float")) ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("float")) ) }), # Additional links to the codebase or references codebase_urls=["http://github.com/path/to/codebase/of/new_module"], reference_urls=["http://path.to.reference.url/new_module"] ) def _download_and_prepare(self, dl_manager): """Optional: download external resources useful to compute the scores""" # TODO: Download external resources if needed pass def _compute(self, payload, max_iou: float = 0.5, filters = {}, recognition_thresholds = [0.3, 0.5, 0.8], debug: bool = False): """Returns the scores""" # TODO: Compute the different scores of the module return calculate_from_payload(payload, max_iou, filters, recognition_thresholds, debug) #return calculate(predictions, references, max_iou) def recognition(track_ratios, th = 0.5): """Number of objects tracked for at least 20 percent of lifespan.""" return track_ratios[track_ratios >= th].count() def num_gt_ids(df): """Number of unique gt ids.""" return df.full["OId"].dropna().unique().shape[0] def calculate(predictions, references, max_iou: float = 0.5, recognition_thresholds: list = [0.3, 0.5, 0.8] ): """Returns the scores""" try: np_predictions = np.array(predictions) except: raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]") try: np_references = np.array(references) except: raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]") if np_predictions.shape[1] != 7: raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]") if np_references.shape[1] != 6: raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]") if np_predictions[:, 0].min() <= 0: raise ValueError("The frame number in the predictions should be a positive integer") if np_references[:, 0].min() <= 0: raise ValueError("The frame number in the references should be a positive integer") num_frames = int(max(np_references[:, 0].max(), np_predictions[:, 0].max())) acc = mm.MOTAccumulator(auto_id=True) for i in range(1, num_frames+1): preds = np_predictions[np_predictions[:, 0] == i, 1:6] refs = np_references[np_references[:, 0] == i, 1:6] C = mm.distances.iou_matrix(refs[:,1:], preds[:,1:], max_iou = max_iou) acc.update(refs[:,0].astype('int').tolist(), preds[:,0].astype('int').tolist(), C) mh = mm.metrics.create() summary = mh.compute(acc, metrics=['num_misses', 'num_false_positives', 'num_detections']).to_dict() df = events_to_df_map(acc.events) tr_ratios = track_ratios(df, obj_frequencies(df)) unique_gt_ids = num_gt_ids(df) namemap = {"num_misses": "fn", "num_false_positives": "fp", "num_detections": "tp"} for key in list(summary.keys()): if key in namemap: summary[namemap[key]] = float(summary[key][0]) summary.pop(key) else: summary[key] = float(summary[key][0]) summary["num_gt_ids"] = unique_gt_ids for th in recognition_thresholds: recognized = recognition(tr_ratios, th) summary[f'recognized_{th}'] = int(recognized) return summary def build_metrics_template(models, filters): metrics_dict = {} for model in models: metrics_dict[model] = {} metrics_dict[model]["all"] = {} for filter, filter_ranges in filters.items(): metrics_dict[model][filter] = {} for filter_range in filter_ranges: filter_range_name = filter_range[0] metrics_dict[model][filter][filter_range_name] = {} return metrics_dict def calculate_from_payload(payload: dict, max_iou: float = 0.5, filters = {}, recognition_thresholds = [0.3, 0.5, 0.8], debug: bool = False): if not isinstance(payload, dict): try: payload = payload.to_dict() except Exception as e: raise ValueError( "The payload should be a dictionary or a compatible object" ) from e gt_field_name = payload['gt_field_name'] models = payload['models'] sequence_list = payload['sequence_list'] if debug: print("gt_field_name: ", gt_field_name) print("models: ", models) print("sequence_list: ", sequence_list) metrics_per_sequence = {} metrics_global = build_metrics_template(models, filters) for sequence in sequence_list: metrics_per_sequence[sequence] = {} frames = payload['sequences'][sequence][gt_field_name] all_formated_references = {"all": []} for filter, filter_ranges in filters.items(): all_formated_references[filter] = {} for filter_range in filter_ranges: filter_range_name = filter_range[0] all_formated_references[filter][filter_range_name] = [] for frame_id, frame in enumerate(frames): for detection in frame: index = detection['index'] x, y, w, h = detection['bounding_box'] all_formated_references["all"].append([frame_id+1, index, x, y, w, h]) for filter, filter_ranges in filters.items(): filter_value = detection[filter] for filter_range in filter_ranges: filter_range_name, filter_range_limits = filter_range[0], filter_range[1] if filter_value >= filter_range_limits[0] and filter_value <= filter_range_limits[1]: all_formated_references[filter][filter_range_name].append([frame_id+1, index, x, y, w, h]) metrics_per_sequence[sequence] = build_metrics_template(models, filters) for model in models: frames = payload['sequences'][sequence][model] formated_predictions = [] for frame_id, frame in enumerate(frames): for detection in frame: index = detection['index'] x, y, w, h = detection['bounding_box'] confidence = 1 formated_predictions.append([frame_id+1, index, x, y, w, h, confidence]) if debug: print("sequence/model: ", sequence, model) print("formated_predictions: ", formated_predictions) print("formated_references: ", all_formated_references) if len(formated_predictions) == 0: metrics_per_sequence[sequence][model] = "Model had no predictions." elif len(all_formated_references["all"]) == 0: metrics_per_sequence[sequence][model] = "No ground truth." else: sequence_metrics = calculate(formated_predictions, all_formated_references["all"], max_iou=max_iou, recognition_thresholds = recognition_thresholds) sequence_metrics = realize_metrics(sequence_metrics, recognition_thresholds) metrics_per_sequence[sequence][model]["all"] = sequence_metrics metrics_global[model]["all"] = sum_dicts(metrics_global[model]["all"], sequence_metrics) metrics_global[model]["all"] = realize_metrics(metrics_global[model]["all"], recognition_thresholds) for filter, filter_ranges in filters.items(): for filter_range in filter_ranges: filter_range_name = filter_range[0] sequence_metrics = calculate(formated_predictions, all_formated_references[filter][filter_range_name], max_iou=max_iou, recognition_thresholds = recognition_thresholds) sequence_metrics = realize_metrics(sequence_metrics, recognition_thresholds) metrics_per_sequence[sequence][model][filter][filter_range_name] = sequence_metrics metrics_global[model][filter][filter_range_name] = sum_dicts(metrics_global[model][filter][filter_range_name], sequence_metrics) metrics_global[model][filter][filter_range_name] = realize_metrics(metrics_global[model][filter][filter_range_name], recognition_thresholds) output = {"global": metrics_global, "per_sequence": metrics_per_sequence} return output def sum_dicts(dict1, dict2): """ Recursively sums the numerical values in two nested dictionaries. """ result = {} for key in dict1.keys() | dict2.keys(): # Union of keys from both dictionaries val1 = dict1.get(key, 0) val2 = dict2.get(key, 0) if isinstance(val1, dict) and isinstance(val2, dict): # If both values are dictionaries, recursively sum them result[key] = sum_dicts(val1, val2) elif isinstance(val1, (int, float)) and isinstance(val2, (int, float)): # If both are numbers, sum them result[key] = val1 + val2 else: # If only one dictionary has the key, take the non-zero value result[key] = val1 if val1 != 0 else val2 return result def realize_metrics(metrics_dict, recognition_thresholds): """ calculates metrics based on raw metrics """ metrics_dict["precision"] = metrics_dict["tp"]/(metrics_dict["tp"]+metrics_dict["fp"]) metrics_dict["recall"] = metrics_dict["tp"]/(metrics_dict["tp"]+metrics_dict["fn"]) metrics_dict["f1"] = 2*metrics_dict["precision"]*metrics_dict["recall"]/(metrics_dict["precision"]+metrics_dict["recall"]) for th in recognition_thresholds: metrics_dict[f"recognition_{th}"] = metrics_dict[f"recognized_{th}"]/metrics_dict["num_gt_ids"] return metrics_dict