Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import pandas as pd | |
import numpy as np | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed | |
# Set the Hugging Face home directory | |
os.environ['HF_HOME'] = '/app/.cache' | |
# Load the base model with device_map set to 'auto' | |
model = AutoModelForCausalLM.from_pretrained( | |
"SHASWATSINGH3101/Qwen2-0.5B-Instruct_lora_merge", | |
device_map='auto' | |
) | |
# Load the tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("SHASWATSINGH3101/Qwen2-0.5B-Instruct_lora_merge") | |
tokenizer.pad_token = tokenizer.eos_token | |
def gen(model, p, maxlen=100, sample=True): | |
toks = tokenizer(p, return_tensors="pt").to(model.device) | |
res = model.generate(**toks, max_new_tokens=maxlen, do_sample=sample, | |
num_return_sequences=1, temperature=0.1, num_beams=1, top_p=0.95) | |
return tokenizer.batch_decode(res, skip_special_tokens=True) | |
def generate_letter(prompt): | |
seed = 42 | |
set_seed(seed) | |
in_data = f"Instruct: {prompt}\n{prompt}\nOutput:\n" | |
# Generate response | |
peft_model_res = gen(model, in_data, 259) | |
peft_model_output = peft_model_res[0].split('Output:\n')[1] | |
# Extract the relevant parts of the output | |
prefix, success, result = peft_model_output.partition('#End') | |
return prefix.strip() | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=generate_letter, | |
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."), | |
outputs="text", | |
title="Letter Generator", | |
description="Generate a custom letter, based on your prompt.", | |
flagging_dir="/app/flagged" # Set the flagging directory | |
) | |
# Launch the app | |
iface.launch(server_name="0.0.0.0", server_port=7860) |