import os import torch import pandas as pd import numpy as np import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed # Set the Hugging Face home directory os.environ['HF_HOME'] = '/app/.cache' # Load the base model with device_map set to 'auto' model = AutoModelForCausalLM.from_pretrained( "SHASWATSINGH3101/Qwen2-0.5B-Instruct_lora_merge", device_map='auto' ) # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("SHASWATSINGH3101/Qwen2-0.5B-Instruct_lora_merge") tokenizer.pad_token = tokenizer.eos_token def gen(model, p, maxlen=100, sample=True): toks = tokenizer(p, return_tensors="pt").to(model.device) res = model.generate(**toks, max_new_tokens=maxlen, do_sample=sample, num_return_sequences=1, temperature=0.1, num_beams=1, top_p=0.95) return tokenizer.batch_decode(res, skip_special_tokens=True) def generate_letter(prompt): seed = 42 set_seed(seed) in_data = f"Instruct: {prompt}\n{prompt}\nOutput:\n" # Generate response peft_model_res = gen(model, in_data, 259) peft_model_output = peft_model_res[0].split('Output:\n')[1] # Extract the relevant parts of the output prefix, success, result = peft_model_output.partition('#End') return prefix.strip() # Create Gradio interface iface = gr.Interface( fn=generate_letter, inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."), outputs="text", title="Legal Letter Generator", description="Generate a letter informing someone of potential legal action due to a dispute or violation.", flagging_dir="/app/flagged" # Set the flagging directory ) # Launch the app iface.launch(server_name="0.0.0.0", server_port=7860)