File size: 17,905 Bytes
3b2b066
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import torch
import torch.nn as nn
import torch.nn.functional as F


class CaptionModel(nn.Module):
    def __init__(self):
        super(CaptionModel, self).__init__()

    def forward(self, *args, **kwargs):
        mode = kwargs.get('mode', 'forward')
        if 'mode' in kwargs:
            del kwargs['mode']
        return getattr(self, '_' + mode)(*args, **kwargs)

    def beam_search(self, init_state, init_logprobs, *args, **kwargs):

        def add_diversity(beam_seq_table, logprobs, t, divm, diversity_lambda, bdash):
            local_time = t - divm
            unaug_logprobs = logprobs.clone()
            batch_size = beam_seq_table[0].shape[0]

            if divm > 0:
                change = logprobs.new_zeros(batch_size, logprobs.shape[-1])
                for prev_choice in range(divm):
                    prev_decisions = beam_seq_table[prev_choice][:, :, local_time]  # Nxb
                    for prev_labels in range(bdash):
                        change.scatter_add_(1, prev_decisions[:, prev_labels].unsqueeze(-1),
                                            change.new_ones(batch_size, 1))

                if local_time == 0:
                    logprobs = logprobs - change * diversity_lambda
                else:
                    logprobs = logprobs - self.repeat_tensor(bdash, change) * diversity_lambda

            return logprobs, unaug_logprobs

        def beam_step(logprobs, unaug_logprobs, beam_size, t, beam_seq, beam_seq_logprobs, beam_logprobs_sum, state):

            batch_size = beam_logprobs_sum.shape[0]
            vocab_size = logprobs.shape[-1]
            logprobs = logprobs.reshape(batch_size, -1, vocab_size)
            if t == 0:
                assert logprobs.shape[1] == 1
                beam_logprobs_sum = beam_logprobs_sum[:, :1]
            candidate_logprobs = beam_logprobs_sum.unsqueeze(-1) + logprobs
            ys, ix = torch.sort(candidate_logprobs.reshape(candidate_logprobs.shape[0], -1), -1, True)
            ys, ix = ys[:, :beam_size], ix[:, :beam_size]
            beam_ix = ix // vocab_size
            selected_ix = ix % vocab_size
            state_ix = (beam_ix + torch.arange(batch_size).type_as(beam_ix).unsqueeze(-1) * logprobs.shape[1]).reshape(
                -1)

            if t > 0:
                assert (beam_seq.gather(1, beam_ix.unsqueeze(-1).expand_as(beam_seq)) ==
                        beam_seq.reshape(-1, beam_seq.shape[-1])[state_ix].view_as(beam_seq)).all()
                beam_seq = beam_seq.gather(1, beam_ix.unsqueeze(-1).expand_as(beam_seq))

                beam_seq_logprobs = beam_seq_logprobs.gather(1, beam_ix.unsqueeze(-1).unsqueeze(-1).expand_as(
                    beam_seq_logprobs))

            beam_seq = torch.cat([beam_seq, selected_ix.unsqueeze(-1)], -1)
            beam_logprobs_sum = beam_logprobs_sum.gather(1, beam_ix) + \
                                logprobs.reshape(batch_size, -1).gather(1, ix)
            assert (beam_logprobs_sum == ys).all()
            _tmp_beam_logprobs = unaug_logprobs[state_ix].reshape(batch_size, -1, vocab_size)
            beam_logprobs = unaug_logprobs.reshape(batch_size, -1, vocab_size).gather(1,
                                                                                      beam_ix.unsqueeze(-1).expand(-1,
                                                                                                                   -1,
                                                                                                                   vocab_size))
            assert (_tmp_beam_logprobs == beam_logprobs).all()
            beam_seq_logprobs = torch.cat([
                beam_seq_logprobs,
                beam_logprobs.reshape(batch_size, -1, 1, vocab_size)], 2)

            new_state = [None for _ in state]
            for _ix in range(len(new_state)):
                new_state[_ix] = state[_ix][:, state_ix]
            state = new_state
            return beam_seq, beam_seq_logprobs, beam_logprobs_sum, state

        opt = kwargs['opt']
        temperature = opt.get('temperature', 1)
        beam_size = opt.get('beam_size', 10)
        group_size = opt.get('group_size', 1)
        diversity_lambda = opt.get('diversity_lambda', 0.5)
        decoding_constraint = opt.get('decoding_constraint', 0)
        suppress_UNK = opt.get('suppress_UNK', 0)
        length_penalty = utils.penalty_builder(opt.get('length_penalty', ''))
        bdash = beam_size // group_size

        batch_size = init_logprobs.shape[0]
        device = init_logprobs.device
        beam_seq_table = [torch.LongTensor(batch_size, bdash, 0).to(device) for _ in range(group_size)]
        beam_seq_logprobs_table = [torch.FloatTensor(batch_size, bdash, 0, self.vocab_size + 1).to(device) for _ in
                                   range(group_size)]
        beam_logprobs_sum_table = [torch.zeros(batch_size, bdash).to(device) for _ in range(group_size)]

        done_beams_table = [[[] for __ in range(group_size)] for _ in range(batch_size)]
        state_table = [[_.clone() for _ in init_state] for _ in range(group_size)]
        logprobs_table = [init_logprobs.clone() for _ in range(group_size)]

        args = list(args)
        args = utils.split_tensors(group_size, args)
        if self.__class__.__name__ == 'AttEnsemble':
            args = [[[args[j][i][k] for i in range(len(self.models))] for j in range(len(args))] for k in
                    range(group_size)]
        else:
            args = [[args[i][j] for i in range(len(args))] for j in range(group_size)]

        for t in range(self.max_seq_length + group_size - 1):
            for divm in range(group_size):
                if t >= divm and t <= self.max_seq_length + divm - 1:
                    logprobs = logprobs_table[divm]
                    if decoding_constraint and t - divm > 0:
                        logprobs.scatter_(1, beam_seq_table[divm][:, :, t - divm - 1].reshape(-1, 1).to(device),
                                          float('-inf'))
                    if suppress_UNK and hasattr(self, 'vocab') and self.vocab[str(logprobs.size(1) - 1)] == 'UNK':
                        logprobs[:, logprobs.size(1) - 1] = logprobs[:, logprobs.size(1) - 1] - 1000

                    logprobs, unaug_logprobs = add_diversity(beam_seq_table, logprobs, t, divm, diversity_lambda, bdash)

                    # infer new beams
                    beam_seq_table[divm], \
                    beam_seq_logprobs_table[divm], \
                    beam_logprobs_sum_table[divm], \
                    state_table[divm] = beam_step(logprobs,
                                                  unaug_logprobs,
                                                  bdash,
                                                  t - divm,
                                                  beam_seq_table[divm],
                                                  beam_seq_logprobs_table[divm],
                                                  beam_logprobs_sum_table[divm],
                                                  state_table[divm])

                    for b in range(batch_size):
                        is_end = beam_seq_table[divm][b, :, t - divm] == self.eos_idx
                        assert beam_seq_table[divm].shape[-1] == t - divm + 1
                        if t == self.max_seq_length + divm - 1:
                            is_end.fill_(1)
                        for vix in range(bdash):
                            if is_end[vix]:
                                final_beam = {
                                    'seq': beam_seq_table[divm][b, vix].clone(),
                                    'logps': beam_seq_logprobs_table[divm][b, vix].clone(),
                                    'unaug_p': beam_seq_logprobs_table[divm][b, vix].sum().item(),
                                    'p': beam_logprobs_sum_table[divm][b, vix].item()
                                }
                                final_beam['p'] = length_penalty(t - divm + 1, final_beam['p'])
                                done_beams_table[b][divm].append(final_beam)
                        beam_logprobs_sum_table[divm][b, is_end] -= 1000


                    it = beam_seq_table[divm][:, :, t - divm].reshape(-1)
                    logprobs_table[divm], state_table[divm] = self.get_logprobs_state(it.cuda(), *(
                            args[divm] + [state_table[divm]]))
                    logprobs_table[divm] = F.log_softmax(logprobs_table[divm] / temperature, dim=-1)

        done_beams_table = [[sorted(done_beams_table[b][i], key=lambda x: -x['p'])[:bdash] for i in range(group_size)]
                            for b in range(batch_size)]
        done_beams = [sum(_, []) for _ in done_beams_table]
        return done_beams

    def old_beam_search(self, init_state, init_logprobs, *args, **kwargs):

        def add_diversity(beam_seq_table, logprobsf, t, divm, diversity_lambda, bdash):
            local_time = t - divm
            unaug_logprobsf = logprobsf.clone()
            for prev_choice in range(divm):
                prev_decisions = beam_seq_table[prev_choice][local_time]
                for sub_beam in range(bdash):
                    for prev_labels in range(bdash):
                        logprobsf[sub_beam][prev_decisions[prev_labels]] = logprobsf[sub_beam][prev_decisions[
                            prev_labels]] - diversity_lambda
            return unaug_logprobsf


        def beam_step(logprobsf, unaug_logprobsf, beam_size, t, beam_seq, beam_seq_logprobs, beam_logprobs_sum, state):

            ys, ix = torch.sort(logprobsf, 1, True)
            candidates = []
            cols = min(beam_size, ys.size(1))
            rows = beam_size
            if t == 0:
                rows = 1
            for c in range(cols):
                for q in range(rows):
                    local_logprob = ys[q, c].item()
                    candidate_logprob = beam_logprobs_sum[q] + local_logprob
                    candidates.append({'c': ix[q, c], 'q': q, 'p': candidate_logprob, 'r': unaug_logprobsf[q]})
            candidates = sorted(candidates, key=lambda x: -x['p'])

            new_state = [_.clone() for _ in state]
            if t >= 1:
                beam_seq_prev = beam_seq[:t].clone()
                beam_seq_logprobs_prev = beam_seq_logprobs[:t].clone()
            for vix in range(beam_size):
                v = candidates[vix]
                if t >= 1:
                    beam_seq[:t, vix] = beam_seq_prev[:, v['q']]
                    beam_seq_logprobs[:t, vix] = beam_seq_logprobs_prev[:, v['q']]
                for state_ix in range(len(new_state)):
                    new_state[state_ix][:, vix] = state[state_ix][:, v['q']]
                beam_seq[t, vix] = v['c']
                beam_seq_logprobs[t, vix] = v['r']
                beam_logprobs_sum[vix] = v['p']
            state = new_state
            return beam_seq, beam_seq_logprobs, beam_logprobs_sum, state, candidates

        opt = kwargs['opt']
        temperature = opt.get('temperature', 1)
        beam_size = opt.get('beam_size', 10)
        group_size = opt.get('group_size', 1)
        diversity_lambda = opt.get('diversity_lambda', 0.5)
        decoding_constraint = opt.get('decoding_constraint', 0)
        suppress_UNK = opt.get('suppress_UNK', 0)
        length_penalty = utils.penalty_builder(opt.get('length_penalty', ''))
        bdash = beam_size // group_size

        # INITIALIZATIONS
        beam_seq_table = [torch.LongTensor(self.max_seq_length, bdash).zero_() for _ in range(group_size)]
        beam_seq_logprobs_table = [torch.FloatTensor(self.max_seq_length, bdash, self.vocab_size + 1).zero_() for _ in
                                   range(group_size)]
        beam_logprobs_sum_table = [torch.zeros(bdash) for _ in range(group_size)]

        done_beams_table = [[] for _ in range(group_size)]
        state_table = list(zip(*[_.chunk(group_size, 1) for _ in init_state]))
        logprobs_table = list(init_logprobs.chunk(group_size, 0))

        args = list(args)
        if self.__class__.__name__ == 'AttEnsemble':
            args = [[_.chunk(group_size) if _ is not None else [None] * group_size for _ in args_] for args_ in
                    args]
            args = [[[args[j][i][k] for i in range(len(self.models))] for j in range(len(args))] for k in
                    range(group_size)]
        else:
            args = [_.chunk(group_size) if _ is not None else [None] * group_size for _ in args]
            args = [[args[i][j] for i in range(len(args))] for j in range(group_size)]

        for t in range(self.max_seq_length + group_size - 1):
            for divm in range(group_size):
                if t >= divm and t <= self.max_seq_length + divm - 1:
                    logprobsf = logprobs_table[divm].float()
                    if decoding_constraint and t - divm > 0:
                        logprobsf.scatter_(1, beam_seq_table[divm][t - divm - 1].unsqueeze(1).cuda(), float('-inf'))
                    if suppress_UNK and hasattr(self, 'vocab') and self.vocab[str(logprobsf.size(1) - 1)] == 'UNK':
                        logprobsf[:, logprobsf.size(1) - 1] = logprobsf[:, logprobsf.size(1) - 1] - 1000

                    unaug_logprobsf = add_diversity(beam_seq_table, logprobsf, t, divm, diversity_lambda, bdash)

                    beam_seq_table[divm], \
                    beam_seq_logprobs_table[divm], \
                    beam_logprobs_sum_table[divm], \
                    state_table[divm], \
                    candidates_divm = beam_step(logprobsf,
                                                unaug_logprobsf,
                                                bdash,
                                                t - divm,
                                                beam_seq_table[divm],
                                                beam_seq_logprobs_table[divm],
                                                beam_logprobs_sum_table[divm],
                                                state_table[divm])

                    for vix in range(bdash):
                        if beam_seq_table[divm][t - divm, vix] == self.eos_idx or t == self.max_seq_length + divm - 1:
                            final_beam = {
                                'seq': beam_seq_table[divm][:, vix].clone(),
                                'logps': beam_seq_logprobs_table[divm][:, vix].clone(),
                                'unaug_p': beam_seq_logprobs_table[divm][:, vix].sum().item(),
                                'p': beam_logprobs_sum_table[divm][vix].item()
                            }
                            final_beam['p'] = length_penalty(t - divm + 1, final_beam['p'])
                            done_beams_table[divm].append(final_beam)
                            beam_logprobs_sum_table[divm][vix] = -1000


                    it = beam_seq_table[divm][t - divm]
                    logprobs_table[divm], state_table[divm] = self.get_logprobs_state(it.cuda(), *(
                            args[divm] + [state_table[divm]]))
                    logprobs_table[divm] = F.log_softmax(logprobs_table[divm] / temperature, dim=-1)

        done_beams_table = [sorted(done_beams_table[i], key=lambda x: -x['p'])[:bdash] for i in range(group_size)]
        done_beams = sum(done_beams_table, [])
        return done_beams

    def sample_next_word(self, logprobs, sample_method, temperature):
        if sample_method == 'greedy':
            sampleLogprobs, it = torch.max(logprobs.data, 1)
            it = it.view(-1).long()
        elif sample_method == 'gumbel':
            def sample_gumbel(shape, eps=1e-20):
                U = torch.rand(shape).cuda()
                return -torch.log(-torch.log(U + eps) + eps)

            def gumbel_softmax_sample(logits, temperature):
                y = logits + sample_gumbel(logits.size())
                return F.log_softmax(y / temperature, dim=-1)

            _logprobs = gumbel_softmax_sample(logprobs, temperature)
            _, it = torch.max(_logprobs.data, 1)
            sampleLogprobs = logprobs.gather(1, it.unsqueeze(1))
        else:
            logprobs = logprobs / temperature
            if sample_method.startswith('top'):
                top_num = float(sample_method[3:])
                if 0 < top_num < 1:
                    probs = F.softmax(logprobs, dim=1)
                    sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=1)
                    _cumsum = sorted_probs.cumsum(1)
                    mask = _cumsum < top_num
                    mask = torch.cat([torch.ones_like(mask[:, :1]), mask[:, :-1]], 1)
                    sorted_probs = sorted_probs * mask.float()
                    sorted_probs = sorted_probs / sorted_probs.sum(1, keepdim=True)
                    logprobs.scatter_(1, sorted_indices, sorted_probs.log())
                else:
                    the_k = int(top_num)
                    tmp = torch.empty_like(logprobs).fill_(float('-inf'))
                    topk, indices = torch.topk(logprobs, the_k, dim=1)
                    tmp = tmp.scatter(1, indices, topk)
                    logprobs = tmp
            it = torch.distributions.Categorical(logits=logprobs.detach()).sample()
            sampleLogprobs = logprobs.gather(1, it.unsqueeze(1))  # gather the logprobs at sampled positions
        return it, sampleLogprobs