Update app.py
Browse files
app.py
CHANGED
@@ -1,189 +1,130 @@
|
|
1 |
-
import json
|
2 |
-
|
3 |
-
from KMVE_RG.models.SGF_model import SGF
|
4 |
-
from KMVE_RG.modules.tokenizers import Tokenizer
|
5 |
-
from KMVE_RG.modules.metrics import compute_scores
|
6 |
-
import numpy as np
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from
|
10 |
-
|
11 |
-
import gradio as gr
|
12 |
-
import torch
|
13 |
-
from PIL import Image
|
14 |
-
import os
|
15 |
-
from torchvision import transforms
|
16 |
-
|
17 |
-
np.random.seed(9233)
|
18 |
-
torch.manual_seed(9233)
|
19 |
-
torch.backends.cudnn.deterministic = True
|
20 |
-
torch.backends.cudnn.benchmark = False
|
21 |
-
|
22 |
-
class Generator(object):
|
23 |
-
def __init__(self, model_type):
|
24 |
-
if model_type == '甲状腺':
|
25 |
-
self.args = thyroid_args
|
26 |
-
elif model_type == '乳腺':
|
27 |
-
self.args = breast_args
|
28 |
-
elif model_type == '肝脏':
|
29 |
-
self.args = liver_args
|
30 |
-
self.tokenizer = Tokenizer(self.args)
|
31 |
-
self.model = SGF(self.args, self.tokenizer)
|
32 |
-
sd = torch.load(self.args.models)['state_dict']
|
33 |
-
msg = self.model.load_state_dict(sd)
|
34 |
-
print(msg)
|
35 |
-
self.model.eval()
|
36 |
-
self.metrics = compute_scores
|
37 |
-
self.transform = transforms.Compose([
|
38 |
-
transforms.Resize((224, 224)),
|
39 |
-
transforms.ToTensor(),
|
40 |
-
transforms.Normalize((0.485, 0.456, 0.406),
|
41 |
-
(0.229, 0.224, 0.225))])
|
42 |
-
with open(self.args.ann_path, 'r', encoding='utf-8-sig') as f:
|
43 |
-
self.data = json.load(f)
|
44 |
-
print('模型加载完成')
|
45 |
-
|
46 |
-
def image_process(self, img_paths):
|
47 |
-
image_1 = Image.open(os.path.join(self.args.image_dir, img_paths[0])).convert('RGB')
|
48 |
-
image_2 = Image.open(os.path.join(self.args.image_dir, img_paths[1])).convert('RGB')
|
49 |
-
if self.transform is not None:
|
50 |
-
image_1 = self.transform(image_1)
|
51 |
-
image_2 = self.transform(image_2)
|
52 |
-
image = torch.stack((image_1, image_2), 0)
|
53 |
-
return image
|
54 |
-
|
55 |
-
def generate(self, uid):
|
56 |
-
img_paths, report = self.data[uid]['img_paths'], self.data[uid]['report']
|
57 |
-
imgs = self.image_process(img_paths)
|
58 |
-
imgs = imgs.unsqueeze(0)
|
59 |
-
with torch.no_grad():
|
60 |
-
output, _ = self.model(imgs, mode='sample')
|
61 |
-
pred = self.tokenizer.decode(output[0].cpu().numpy())
|
62 |
-
gt = self.tokenizer.decode(self.tokenizer(report[:self.args.max_seq_length])[1:])
|
63 |
-
scores = self.metrics({0: [gt]}, {0: [pred]})
|
64 |
-
return pred, gt, scores
|
65 |
-
|
66 |
-
def visualize_images(self, uid):
|
67 |
-
image_1 = Image.open(os.path.join(self.args.image_dir, self.data[uid]['img_paths'][0])).convert('RGB')
|
68 |
-
image_2 = Image.open(os.path.join(self.args.image_dir, self.data[uid]['img_paths'][1])).convert('RGB')
|
69 |
-
return image_1, image_2
|
70 |
-
|
71 |
-
# 主应用程序
|
72 |
-
def demo():
|
73 |
-
with gr.Blocks() as app:
|
74 |
-
gr.Markdown("# 超声报告生成Demo")
|
75 |
-
gr.Markdown('### SIAT认知与交互技术中心')
|
76 |
-
gr.Markdown('### 项目主页:https://lijunrio.github.io/Ultrasound-Report-Generation/')
|
77 |
-
|
78 |
-
# 选择模型
|
79 |
-
with gr.Row():
|
80 |
-
model_choice = gr.Radio(choices=["甲状腺", "乳腺", "肝脏"], label="请选择模型类型", interactive=True)
|
81 |
-
|
82 |
-
model = gr.State()
|
83 |
-
|
84 |
-
# 展示UID按钮
|
85 |
-
uids = [f"uid_{i}" for i in range(20)]
|
86 |
-
with gr.Row():
|
87 |
-
uid_choice = gr.Radio(choices=[f"{uid}" for uid in uids], label="请选择uid", interactive=False)
|
88 |
-
|
89 |
-
# 定义展示图片的组件
|
90 |
-
with gr.Row():
|
91 |
-
image1_display = gr.Image(label="图像1", visible=True)
|
92 |
-
image2_display = gr.Image(label="图像2", visible=True)
|
93 |
-
|
94 |
-
# 定义生成报告的按钮和文本框
|
95 |
-
generate_button = gr.Button("生成报告", interactive=False)
|
96 |
-
generated_report_display = gr.Textbox(label="生成的报告", visible=True)
|
97 |
-
ground_truth_display = gr.Textbox(label="Ground Truth报告", visible=True)
|
98 |
-
nlp_score_display = gr.Textbox(label="NLP得分", visible=True)
|
99 |
-
|
100 |
-
# 加载模型的回调函数
|
101 |
-
def load_model_and_uids(model_type):
|
102 |
-
model = Generator(model_type)
|
103 |
-
return model, gr.update(interactive=True)
|
104 |
-
|
105 |
-
# 点击UID按钮后加载对应的图片
|
106 |
-
def on_uid_click(model, uid):
|
107 |
-
image1, image2 = model.visualize_images(uid)
|
108 |
-
# 显示图片和生成按钮
|
109 |
-
return image1, image2, gr.update(interactive=True)
|
110 |
-
|
111 |
-
# 点击生成按钮生成报告
|
112 |
-
def on_generate_click(model, uid):
|
113 |
-
generated_report, ground_truth_report, nlp_score = model.generate(uid)
|
114 |
-
# 展示生成的报告、Ground Truth 和 NLP 得分
|
115 |
-
return generated_report, ground_truth_report, f"NLP得分: {nlp_score}"
|
116 |
-
|
117 |
-
# 链接模型选择与UID按钮显示
|
118 |
-
model_choice.change(load_model_and_uids, inputs=model_choice, outputs=[model, uid_choice])
|
119 |
-
|
120 |
-
# 链接UID按钮点击与图片显示
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
# with gr.Blocks() as app:
|
132 |
-
# gr.Markdown("# 医学报告生成 Demo")
|
133 |
-
#
|
134 |
-
# # 选择模型类型
|
135 |
-
# model_choice = gr.Radio(choices=["甲状腺", "乳腺", "肝脏"], label="请选择模型类型", interactive=True)
|
136 |
-
#
|
137 |
-
# # 创建空的 Generator 实例(将稍后初始化)
|
138 |
-
# generator_instance = gr.State()
|
139 |
-
#
|
140 |
-
# # 展示 UID 按钮
|
141 |
-
# uids = [f"uid_{i}" for i in range(20)]
|
142 |
-
# selected_uid = gr.State() # 用于存储当前选择的 UID
|
143 |
-
# uid_buttons = [gr.Button(f"{uid}") for uid in uids]
|
144 |
-
#
|
145 |
-
# # 定义展示图片的组件
|
146 |
-
# with gr.Row():
|
147 |
-
# image1_display = gr.Image(label="图像 1", visible=False)
|
148 |
-
# image2_display = gr.Image(label="图像 2", visible=False)
|
149 |
-
#
|
150 |
-
# # 定义生成报告的按钮和文本框
|
151 |
-
# generate_button = gr.Button("生成报告", visible=False)
|
152 |
-
# generated_report_display = gr.Textbox(label="生成的报告", visible=False)
|
153 |
-
# ground_truth_display = gr.Textbox(label="Ground Truth 报告", visible=False)
|
154 |
-
# nlp_score_display = gr.Textbox(label="NLP 得分", visible=False)
|
155 |
-
#
|
156 |
-
# # 模型选择后初始化 Generator 类
|
157 |
-
# def initialize_generator(model_type):
|
158 |
-
# generator = Generator(model_type) # 初始化 Generator
|
159 |
-
# return generator, True # 返回生成器实例,显示 UID 按钮
|
160 |
-
#
|
161 |
-
# # 点击 UID 按钮后可视化对应图片
|
162 |
-
# def on_uid_click(uid, generator):
|
163 |
-
# image1, image2 = generator.visual_images(uid)
|
164 |
-
# return image1, image2, uid, True # 返回图片、UID,显示生成按钮
|
165 |
-
#
|
166 |
-
# # 点击生成按钮生成 Ground Truth 报告、预测结果和 NLP 分数
|
167 |
-
# def on_generate_click(generator, uid):
|
168 |
-
# ground_truth, predict, nlp_score = generator.generate(uid)
|
169 |
-
# return ground_truth, predict, nlp_score
|
170 |
-
#
|
171 |
-
# # 链接模型选择与生成器初始化
|
172 |
-
# model_choice.change(initialize_generator, inputs=model_choice, outputs=[generator_instance, uid_buttons[0]])
|
173 |
-
#
|
174 |
-
# # 链接 UID 按钮点击与图片显示
|
175 |
-
# for i, uid_button in enumerate(uid_buttons):
|
176 |
-
# uid_button.click(on_uid_click, inputs=[selected_uid, generator_instance],
|
177 |
-
# outputs=[image1_display, image2_display, selected_uid, generate_button],
|
178 |
-
# fn=lambda uid=uids[i]: uid)
|
179 |
-
#
|
180 |
-
# # 点击生成按钮时生成报告
|
181 |
-
# generate_button.click(on_generate_click, inputs=[generator_instance, selected_uid],
|
182 |
-
# outputs=[ground_truth_display, generated_report_display, nlp_score_display])
|
183 |
-
#
|
184 |
-
# return app
|
185 |
-
|
186 |
-
if __name__ == '__main__':
|
187 |
-
# 启动应用程序
|
188 |
-
demo().launch()
|
189 |
-
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
from KMVE_RG.models.SGF_model import SGF
|
4 |
+
from KMVE_RG.modules.tokenizers import Tokenizer
|
5 |
+
from KMVE_RG.modules.metrics import compute_scores
|
6 |
+
import numpy as np
|
7 |
+
from utils.thyroid_gen_config import config as thyroid_args
|
8 |
+
from utils.liver_gen_config import config as liver_args
|
9 |
+
from utils.breast_gen_config import config as breast_args
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
import torch
|
13 |
+
from PIL import Image
|
14 |
+
import os
|
15 |
+
from torchvision import transforms
|
16 |
+
|
17 |
+
np.random.seed(9233)
|
18 |
+
torch.manual_seed(9233)
|
19 |
+
torch.backends.cudnn.deterministic = True
|
20 |
+
torch.backends.cudnn.benchmark = False
|
21 |
+
|
22 |
+
class Generator(object):
|
23 |
+
def __init__(self, model_type):
|
24 |
+
if model_type == '甲状腺':
|
25 |
+
self.args = thyroid_args
|
26 |
+
elif model_type == '乳腺':
|
27 |
+
self.args = breast_args
|
28 |
+
elif model_type == '肝脏':
|
29 |
+
self.args = liver_args
|
30 |
+
self.tokenizer = Tokenizer(self.args)
|
31 |
+
self.model = SGF(self.args, self.tokenizer)
|
32 |
+
sd = torch.load(self.args.models)['state_dict']
|
33 |
+
msg = self.model.load_state_dict(sd)
|
34 |
+
print(msg)
|
35 |
+
self.model.eval()
|
36 |
+
self.metrics = compute_scores
|
37 |
+
self.transform = transforms.Compose([
|
38 |
+
transforms.Resize((224, 224)),
|
39 |
+
transforms.ToTensor(),
|
40 |
+
transforms.Normalize((0.485, 0.456, 0.406),
|
41 |
+
(0.229, 0.224, 0.225))])
|
42 |
+
with open(self.args.ann_path, 'r', encoding='utf-8-sig') as f:
|
43 |
+
self.data = json.load(f)
|
44 |
+
print('模型加载完成')
|
45 |
+
|
46 |
+
def image_process(self, img_paths):
|
47 |
+
image_1 = Image.open(os.path.join(self.args.image_dir, img_paths[0])).convert('RGB')
|
48 |
+
image_2 = Image.open(os.path.join(self.args.image_dir, img_paths[1])).convert('RGB')
|
49 |
+
if self.transform is not None:
|
50 |
+
image_1 = self.transform(image_1)
|
51 |
+
image_2 = self.transform(image_2)
|
52 |
+
image = torch.stack((image_1, image_2), 0)
|
53 |
+
return image
|
54 |
+
|
55 |
+
def generate(self, uid):
|
56 |
+
img_paths, report = self.data[uid]['img_paths'], self.data[uid]['report']
|
57 |
+
imgs = self.image_process(img_paths)
|
58 |
+
imgs = imgs.unsqueeze(0)
|
59 |
+
with torch.no_grad():
|
60 |
+
output, _ = self.model(imgs, mode='sample')
|
61 |
+
pred = self.tokenizer.decode(output[0].cpu().numpy())
|
62 |
+
gt = self.tokenizer.decode(self.tokenizer(report[:self.args.max_seq_length])[1:])
|
63 |
+
scores = self.metrics({0: [gt]}, {0: [pred]})
|
64 |
+
return pred, gt, scores
|
65 |
+
|
66 |
+
def visualize_images(self, uid):
|
67 |
+
image_1 = Image.open(os.path.join(self.args.image_dir, self.data[uid]['img_paths'][0])).convert('RGB')
|
68 |
+
image_2 = Image.open(os.path.join(self.args.image_dir, self.data[uid]['img_paths'][1])).convert('RGB')
|
69 |
+
return image_1, image_2
|
70 |
+
|
71 |
+
# 主应用程序
|
72 |
+
def demo():
|
73 |
+
with gr.Blocks() as app:
|
74 |
+
gr.Markdown("# 超声报告生成Demo")
|
75 |
+
gr.Markdown('### SIAT认知与交互技术中心')
|
76 |
+
gr.Markdown('### 项目主页:https://lijunrio.github.io/Ultrasound-Report-Generation/')
|
77 |
+
|
78 |
+
# 选择模型
|
79 |
+
with gr.Row():
|
80 |
+
model_choice = gr.Radio(choices=["甲状腺", "乳腺", "肝脏"], label="请选择模型类型", interactive=True)
|
81 |
+
|
82 |
+
model = gr.State()
|
83 |
+
|
84 |
+
# 展示UID按钮
|
85 |
+
uids = [f"uid_{i}" for i in range(20)]
|
86 |
+
with gr.Row():
|
87 |
+
uid_choice = gr.Radio(choices=[f"{uid}" for uid in uids], label="请选择uid", interactive=False)
|
88 |
+
|
89 |
+
# 定义展示图片的组件
|
90 |
+
with gr.Row():
|
91 |
+
image1_display = gr.Image(label="图像1", visible=True)
|
92 |
+
image2_display = gr.Image(label="图像2", visible=True)
|
93 |
+
|
94 |
+
# 定义生成报告的按钮和文本框
|
95 |
+
generate_button = gr.Button("生成报告", interactive=False)
|
96 |
+
generated_report_display = gr.Textbox(label="生成的报告", visible=True)
|
97 |
+
ground_truth_display = gr.Textbox(label="Ground Truth报告", visible=True)
|
98 |
+
nlp_score_display = gr.Textbox(label="NLP得分", visible=True)
|
99 |
+
|
100 |
+
# 加载模型的回调函数
|
101 |
+
def load_model_and_uids(model_type):
|
102 |
+
model = Generator(model_type)
|
103 |
+
return model, gr.update(interactive=True)
|
104 |
+
|
105 |
+
# 点击UID按钮后加载对应的图片
|
106 |
+
def on_uid_click(model, uid):
|
107 |
+
image1, image2 = model.visualize_images(uid)
|
108 |
+
# 显示图片和生成按钮
|
109 |
+
return image1, image2, gr.update(interactive=True)
|
110 |
+
|
111 |
+
# 点击生成按钮生成报告
|
112 |
+
def on_generate_click(model, uid):
|
113 |
+
generated_report, ground_truth_report, nlp_score = model.generate(uid)
|
114 |
+
# 展示生成的报告、Ground Truth 和 NLP 得分
|
115 |
+
return generated_report, ground_truth_report, f"NLP得分: {nlp_score}"
|
116 |
+
|
117 |
+
# 链接模型选择与UID按钮显示
|
118 |
+
model_choice.change(load_model_and_uids, inputs=model_choice, outputs=[model, uid_choice])
|
119 |
+
|
120 |
+
# 链接UID按钮点击与图片显示
|
121 |
+
uid_choice.change(on_uid_click, inputs=[model, uid_choice], outputs=[image1_display, image2_display, generate_button])
|
122 |
+
|
123 |
+
generate_button.click(on_generate_click, inputs=[model, uid_choice], outputs=[generated_report_display, ground_truth_display, nlp_score_display])
|
124 |
+
|
125 |
+
return app
|
126 |
+
|
127 |
+
if __name__ == '__main__':
|
128 |
+
# 启动应用程序
|
129 |
+
demo().launch()
|
130 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|