import torch def _prepare_device(n_gpu_use): n_gpu = torch.cuda.device_count() if n_gpu_use > 0 and n_gpu == 0: print("Warning: There\'s no GPU available on this machine," "training will be performed on CPU.") n_gpu_use = 0 if n_gpu_use > n_gpu: print("Warning: The number of GPU\'s configured to use is {}, but only {} are available " "on this machine.". format(n_gpu_use, n_gpu)) n_gpu_use = n_gpu device = torch.device('cuda:0' if n_gpu_use > 0 else 'cpu') list_ids = list(range(n_gpu_use)) return device, list_ids