Spaces:
Sleeping
Sleeping
bsiddhharth
commited on
Commit
·
1e97cbb
0
Parent(s):
Initial commit with app.py, cv_question.py , cv_short.py, extraction.py
Browse files- .gitignore +14 -0
- app.log +0 -0
- app.py +71 -0
- cv_question.py +130 -0
- cv_short.py +317 -0
- extraction.py +138 -0
- requirements.txt +18 -0
.gitignore
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ignore virtual environment
|
2 |
+
venv/
|
3 |
+
|
4 |
+
# Ignore environment files
|
5 |
+
.env
|
6 |
+
|
7 |
+
# Ignore Python compiled files
|
8 |
+
*.pyc
|
9 |
+
__pycache__/
|
10 |
+
|
11 |
+
# Ignore specific file (like extraction.pydantic)
|
12 |
+
extraction_pydantic.py
|
13 |
+
cv_quest.py
|
14 |
+
logger.py
|
app.log
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import cv_question
|
4 |
+
import cv_short
|
5 |
+
from logger import setup_logger
|
6 |
+
|
7 |
+
# def initialize_session_state():
|
8 |
+
# """Initialize all session state variables with default values."""
|
9 |
+
# session_vars = {
|
10 |
+
# 'jd_text': "",
|
11 |
+
# 'min_years': 0,
|
12 |
+
# 'required_skills_list': [],
|
13 |
+
# 'uploaded_files': [],
|
14 |
+
# 'results': [],
|
15 |
+
# 'generated_questions': None,
|
16 |
+
# 'current_candidate_index': 0,
|
17 |
+
# 'processed_cvs': {}, # Store processed CV data
|
18 |
+
# 'analysis_complete': False
|
19 |
+
# }
|
20 |
+
|
21 |
+
# for var, default_value in session_vars.items():
|
22 |
+
# if var not in st.session_state:
|
23 |
+
# st.session_state[var] = default_value
|
24 |
+
|
25 |
+
def clear_session_state():
|
26 |
+
"""Clear all session state variables."""
|
27 |
+
for key in list(st.session_state.keys()):
|
28 |
+
del st.session_state[key]
|
29 |
+
# initialize_session_state()
|
30 |
+
|
31 |
+
def main():
|
32 |
+
# Setup logger for app
|
33 |
+
app_logger = setup_logger('app_logger', 'app.log')
|
34 |
+
|
35 |
+
# Initialize session state
|
36 |
+
# initialize_session_state()
|
37 |
+
|
38 |
+
# Sidebar
|
39 |
+
st.sidebar.title("Navigation")
|
40 |
+
app_logger.info("Sidebar navigation displayed")
|
41 |
+
|
42 |
+
# Add reset button in sidebar
|
43 |
+
if st.sidebar.button("Reset All Data"):
|
44 |
+
clear_session_state()
|
45 |
+
st.sidebar.success("All data has been reset!")
|
46 |
+
app_logger.info("Session state reset")
|
47 |
+
|
48 |
+
# Navigation
|
49 |
+
page = st.sidebar.radio("Go to", ["CV Shortlisting", "Interview Questions"])
|
50 |
+
app_logger.info(f"Page selected: {page}")
|
51 |
+
|
52 |
+
try:
|
53 |
+
if page == "CV Shortlisting":
|
54 |
+
app_logger.info("Navigating to CV Shortlisting")
|
55 |
+
cv_short.create_cv_shortlisting_page()
|
56 |
+
|
57 |
+
elif page == "Interview Questions":
|
58 |
+
# Check if CV shortlisting is complete
|
59 |
+
# if not st.session_state.analysis_complete:
|
60 |
+
# st.warning("Please complete the CV shortlisting process first.")
|
61 |
+
# app_logger.warning("Attempted to access Interview Questions without completing CV shortlisting")
|
62 |
+
# else:
|
63 |
+
app_logger.info("Navigating to Interview Questions")
|
64 |
+
cv_question.create_interview_questions_page()
|
65 |
+
|
66 |
+
except Exception as e:
|
67 |
+
app_logger.error(f"Error occurred: {e}")
|
68 |
+
st.error(f"An error occurred: {e}")
|
69 |
+
|
70 |
+
if __name__ == "__main__":
|
71 |
+
main()
|
cv_question.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain_groq import ChatGroq
|
3 |
+
from langchain.prompts import ChatPromptTemplate
|
4 |
+
import os
|
5 |
+
import tempfile
|
6 |
+
import json
|
7 |
+
from extraction import extract_cv_data, process_file, display_candidates_info # importing from your extraction.py
|
8 |
+
|
9 |
+
# Initialize environment variables
|
10 |
+
os.environ['GROQ_API_KEY'] = os.getenv("GROQ_API_KEY")
|
11 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
12 |
+
|
13 |
+
class InterviewQuestionGenerator:
|
14 |
+
def __init__(self):
|
15 |
+
self.llm = ChatGroq(
|
16 |
+
groq_api_key=groq_api_key,
|
17 |
+
# model_name="mixtral-8x7b-32768",
|
18 |
+
model_name = "llama3-8b-8192",
|
19 |
+
temperature=0.7,
|
20 |
+
max_tokens=4096
|
21 |
+
)
|
22 |
+
|
23 |
+
# The prompt template to generate questions based on extracted CV data
|
24 |
+
self.question_template = """
|
25 |
+
Based on the following CV excerpt, generate 5 specific basic technical interview questions
|
26 |
+
that are directly related to the candidate's experience and skills. Make sure the
|
27 |
+
questions test both their claimed knowledge and problem-solving abilities.
|
28 |
+
|
29 |
+
CV Excerpt:
|
30 |
+
{cv_text}
|
31 |
+
|
32 |
+
Skills Mentioned:
|
33 |
+
{skills}
|
34 |
+
|
35 |
+
Return the questions in the following text format:
|
36 |
+
|
37 |
+
(bold)
|
38 |
+
Question 1:\n
|
39 |
+
|
40 |
+
- Technical_question: "Your question here" \n
|
41 |
+
|
42 |
+
- Follow_up_question: "Deep dive question here" \n
|
43 |
+
|
44 |
+
- What_to_listen_for: "Key points to listen for here" \n
|
45 |
+
|
46 |
+
\n\n
|
47 |
+
Question 2:
|
48 |
+
|
49 |
+
- Technical_question: "Your question here" \n
|
50 |
+
|
51 |
+
- Follow_up_question: "Deep dive question here" \n
|
52 |
+
|
53 |
+
- What_to_listen_for: "Key points to listen for here" \n
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
Make sure to follow this format exactly, with the correct structure and labels for each question.
|
58 |
+
|
59 |
+
|
60 |
+
(Repeat for all 5 questions)
|
61 |
+
|
62 |
+
Be sure to make each question clear and actionable, and align it with the skills mentioned in the CV.
|
63 |
+
"""
|
64 |
+
|
65 |
+
# Using ChatPromptTemplate for question generation
|
66 |
+
self.question_prompt = ChatPromptTemplate.from_messages(
|
67 |
+
[
|
68 |
+
("system", self.question_template),
|
69 |
+
("human", "{cv_text}\n{skills}")
|
70 |
+
]
|
71 |
+
)
|
72 |
+
|
73 |
+
def generate_questions(self, cv_text: str, skills: str) -> str:
|
74 |
+
"""Generate interview questions based on CV text and skills."""
|
75 |
+
runnable = self.question_prompt | self.llm # Using Runnable instead of LLMChain
|
76 |
+
questions = runnable.invoke({
|
77 |
+
"cv_text": cv_text,
|
78 |
+
"skills": skills
|
79 |
+
})
|
80 |
+
return questions
|
81 |
+
|
82 |
+
|
83 |
+
def create_interview_questions_page():
|
84 |
+
# Initializing session state variables since they dont exist at first
|
85 |
+
if 'uploaded_file' not in st.session_state:
|
86 |
+
st.session_state.uploaded_file = None
|
87 |
+
if 'cv_text' not in st.session_state:
|
88 |
+
st.session_state.cv_text = None
|
89 |
+
if 'candidates_list' not in st.session_state:
|
90 |
+
st.session_state.candidates_list = None
|
91 |
+
if 'generated_questions' not in st.session_state:
|
92 |
+
st.session_state.generated_questions = None
|
93 |
+
|
94 |
+
st.title("Interview Question Generator")
|
95 |
+
|
96 |
+
# File uploader
|
97 |
+
uploaded_file = st.file_uploader("Upload a CV", type=['pdf', 'txt'])
|
98 |
+
|
99 |
+
# Update session state when new file is uploaded
|
100 |
+
if uploaded_file is not None and (st.session_state.uploaded_file is None or
|
101 |
+
uploaded_file.name != st.session_state.uploaded_file.name):
|
102 |
+
st.session_state.uploaded_file = uploaded_file
|
103 |
+
st.session_state.cv_text = None # Reset CV text
|
104 |
+
st.session_state.candidates_list = None # Reset candidates
|
105 |
+
st.session_state.generated_questions = None # Reset questions
|
106 |
+
|
107 |
+
# Process file if it exists in session state
|
108 |
+
if st.session_state.uploaded_file is not None:
|
109 |
+
# Only process the file if we haven't already
|
110 |
+
if st.session_state.cv_text is None:
|
111 |
+
st.session_state.cv_text = process_file(st.session_state.uploaded_file)
|
112 |
+
st.session_state.candidates_list = extract_cv_data(st.session_state.cv_text)
|
113 |
+
|
114 |
+
# Display candidates info if available
|
115 |
+
if st.session_state.candidates_list:
|
116 |
+
display_candidates_info(st.session_state.candidates_list)
|
117 |
+
|
118 |
+
# Generate questions if not already generated
|
119 |
+
if st.session_state.generated_questions is None:
|
120 |
+
candidate = st.session_state.candidates_list[0]
|
121 |
+
generator = InterviewQuestionGenerator()
|
122 |
+
questions = generator.generate_questions(
|
123 |
+
cv_text=st.session_state.cv_text,
|
124 |
+
skills=", ".join(candidate.skills)
|
125 |
+
)
|
126 |
+
st.session_state.generated_questions = questions.content
|
127 |
+
|
128 |
+
# Display the generated questions
|
129 |
+
st.subheader("Recommended Interview Questions")
|
130 |
+
st.markdown(st.session_state.generated_questions)
|
cv_short.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from langchain_community.document_loaders import PDFPlumberLoader, TextLoader
|
3 |
+
import extraction as extr # extraction.py
|
4 |
+
import streamlit as st
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
# Configure logging
|
8 |
+
logging.basicConfig(level=logging.DEBUG , format='%(asctime)s - %(levelname)s - %(message)s')
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
class CVAnalyzer:
|
13 |
+
|
14 |
+
def __init__(self):
|
15 |
+
# Initialize Groq LLM
|
16 |
+
logger.info("Initializing CVAnalyzer")
|
17 |
+
|
18 |
+
self.llm = extr.initialize_llm() # Updated to use the new function
|
19 |
+
|
20 |
+
logger.info(" LLM initialized")
|
21 |
+
# Initialize embeddings (if needed)
|
22 |
+
# self.embeddings = HuggingFaceEmbeddings(
|
23 |
+
# model_name="sentence-transformers/all-mpnet-base-v2"
|
24 |
+
# )
|
25 |
+
|
26 |
+
def load_document(self, file_path: str) -> str:
|
27 |
+
logger.info(f"Loading document from file: {file_path}")
|
28 |
+
|
29 |
+
"""Load document based on file type."""
|
30 |
+
|
31 |
+
if file_path.endswith('.pdf'):
|
32 |
+
loader = PDFPlumberLoader(file_path)
|
33 |
+
else:
|
34 |
+
loader = TextLoader(file_path)
|
35 |
+
documents = loader.load()
|
36 |
+
|
37 |
+
logger.info(f"Document loaded from {file_path}")
|
38 |
+
|
39 |
+
return " ".join([doc.page_content for doc in documents])
|
40 |
+
|
41 |
+
def extract_cv_info(self, cv_text: str) -> list[extr.cv]: # referring to cv class in extraction.py
|
42 |
+
logger.info("Extracting CV information")
|
43 |
+
|
44 |
+
"""Extract structured information from CV text using new extraction method."""
|
45 |
+
|
46 |
+
extracted_data = extr.extract_cv_data(cv_text)
|
47 |
+
logger.info(f"Extracted {len(extracted_data)} candidate(s) from CV")
|
48 |
+
return extracted_data
|
49 |
+
# return extr.extract_cv_data(cv_text)
|
50 |
+
|
51 |
+
def calculate_match_score(self, cv_info: dict, jd_requirements: dict) -> dict:
|
52 |
+
logger.info(f"Calculating match score for CV: {cv_info.get('name', 'Unknown')}")
|
53 |
+
|
54 |
+
"""Calculate match score between CV and job requirements."""
|
55 |
+
|
56 |
+
score_components = {
|
57 |
+
"skills_match": 0,
|
58 |
+
"experience_match": 0,
|
59 |
+
"overall_score": 0
|
60 |
+
}
|
61 |
+
|
62 |
+
# Skills matching
|
63 |
+
if "skills" in cv_info and "required_skills" in jd_requirements:
|
64 |
+
cv_skills = set(skill.lower() for skill in cv_info["skills"])
|
65 |
+
required_skills = set(skill.lower() for skill in jd_requirements["required_skills"])
|
66 |
+
score_components["skills_match"] = len(cv_skills & required_skills) / len(required_skills)
|
67 |
+
|
68 |
+
# Experience matching
|
69 |
+
if "years_of_exp" in cv_info and "min_years_experience" in jd_requirements:
|
70 |
+
if cv_info["years_of_exp"] >= jd_requirements["min_years_experience"]:
|
71 |
+
score_components["experience_match"] = 1.0
|
72 |
+
else:
|
73 |
+
score_components["experience_match"] = cv_info["years_of_exp"] / jd_requirements["min_years_experience"]
|
74 |
+
|
75 |
+
# Calculate overall score (weighted average)
|
76 |
+
weights = {"skills_match": 0.5, "experience_match": 0.3}
|
77 |
+
score_components["overall_score"] = sum(
|
78 |
+
score * weights[component]
|
79 |
+
for component, score in score_components.items()
|
80 |
+
if component != "overall_score"
|
81 |
+
)
|
82 |
+
|
83 |
+
logger.debug(f"Match score for {cv_info.get('name', 'Unknown')}: {score_components['overall_score']:.2%}")
|
84 |
+
|
85 |
+
return score_components
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
# def create_cv_shortlisting_page():
|
90 |
+
# logger.info("Starting CV shortlisting system")
|
91 |
+
|
92 |
+
# st.title("CV Shortlisting System")
|
93 |
+
|
94 |
+
# # Reset analysis state when starting new analysis
|
95 |
+
# if 'analysis_started' not in st.session_state:
|
96 |
+
# st.session_state.analysis_started = False
|
97 |
+
|
98 |
+
# # Job Description Input
|
99 |
+
# st.header("Job Description")
|
100 |
+
# jd_text = st.text_area("Enter the job description",
|
101 |
+
# value=st.session_state.jd_text if 'jd_text' in st.session_state else "")
|
102 |
+
|
103 |
+
# if jd_text:
|
104 |
+
# st.session_state.jd_text = jd_text
|
105 |
+
|
106 |
+
# # Job Requirements Input
|
107 |
+
# st.header("Job Requirements")
|
108 |
+
# min_years = st.number_input("Minimum years of experience",
|
109 |
+
# min_value=0,
|
110 |
+
# value=st.session_state.min_years if 'min_years' in st.session_state else 3)
|
111 |
+
|
112 |
+
# required_skills = st.text_input("Required skills (comma-separated)",
|
113 |
+
# value=','.join(st.session_state.required_skills_list) if 'required_skills_list' in st.session_state else "")
|
114 |
+
|
115 |
+
# required_skills_list = [skill.strip() for skill in required_skills.split(",") if skill.strip()]
|
116 |
+
|
117 |
+
# # Update session state
|
118 |
+
# st.session_state.required_skills_list = required_skills_list
|
119 |
+
# st.session_state.min_years = min_years
|
120 |
+
|
121 |
+
# # CV Upload
|
122 |
+
# st.header("Upload CVs")
|
123 |
+
# uploaded_files = st.file_uploader("Choose CV files",
|
124 |
+
# accept_multiple_files=True,
|
125 |
+
# type=['pdf', 'txt'],
|
126 |
+
# key="cv_upload")
|
127 |
+
|
128 |
+
# if uploaded_files:
|
129 |
+
# st.session_state.uploaded_files = uploaded_files
|
130 |
+
# st.session_state.analysis_started = True
|
131 |
+
|
132 |
+
# # Analysis Button
|
133 |
+
# if st.button("Analyze CVs") and uploaded_files and jd_text:
|
134 |
+
# st.session_state.results = [] # Reset results
|
135 |
+
# st.session_state.processed_cvs = {} # Reset processed CVs
|
136 |
+
|
137 |
+
# with st.spinner('Analyzing CVs...'):
|
138 |
+
# try:
|
139 |
+
# analyzer = CVAnalyzer()
|
140 |
+
|
141 |
+
# # Prepare job requirements
|
142 |
+
# job_requirements = {
|
143 |
+
# "min_years_experience": st.session_state.min_years,
|
144 |
+
# "required_skills": st.session_state.required_skills_list
|
145 |
+
# }
|
146 |
+
|
147 |
+
# # Process each CV
|
148 |
+
# for uploaded_file in uploaded_files:
|
149 |
+
# cv_text = extr.process_file(uploaded_file)
|
150 |
+
|
151 |
+
# try:
|
152 |
+
# # Extract CV information
|
153 |
+
# candidates = analyzer.extract_cv_info(cv_text)
|
154 |
+
|
155 |
+
# for idx, candidate in enumerate(candidates):
|
156 |
+
# # Calculate match scores
|
157 |
+
# match_scores = analyzer.calculate_match_score(
|
158 |
+
# candidate.__dict__,
|
159 |
+
# job_requirements
|
160 |
+
# )
|
161 |
+
|
162 |
+
# # Store results
|
163 |
+
# result = {
|
164 |
+
# "Name": candidate.name or "Unknown",
|
165 |
+
# "Experience (Years)": candidate.years_of_exp or 0,
|
166 |
+
# "Skills": ", ".join(candidate.skills) if candidate.skills else "None",
|
167 |
+
# "Certifications": ", ".join(candidate.certifications) if candidate.certifications else "None",
|
168 |
+
# "Skills Match": f"{match_scores['skills_match']:.2%}",
|
169 |
+
# "Experience Match": f"{match_scores['experience_match']:.2%}",
|
170 |
+
# "Overall Score": f"{match_scores['overall_score']:.2%}"
|
171 |
+
# }
|
172 |
+
|
173 |
+
# st.session_state.results.append(result)
|
174 |
+
|
175 |
+
# # Store processed CV data for interview questions
|
176 |
+
# st.session_state.processed_cvs[f"{candidate.name}_{idx}"] = {
|
177 |
+
# "cv_text": cv_text,
|
178 |
+
# "candidate": candidate,
|
179 |
+
# "match_scores": match_scores
|
180 |
+
# }
|
181 |
+
|
182 |
+
# except Exception as e:
|
183 |
+
# logger.error(f"Error processing CV: {str(e)}")
|
184 |
+
# st.error(f"Error processing CV: {str(e)}")
|
185 |
+
|
186 |
+
# # Mark analysis as complete
|
187 |
+
# st.session_state.analysis_complete = True
|
188 |
+
|
189 |
+
# # Display results
|
190 |
+
# if st.session_state.results:
|
191 |
+
# df = pd.DataFrame(st.session_state.results)
|
192 |
+
# df = df.sort_values("Overall Score", ascending=False)
|
193 |
+
# st.dataframe(df)
|
194 |
+
|
195 |
+
# # Save top candidates
|
196 |
+
# st.session_state.top_candidates = df.head()
|
197 |
+
# else:
|
198 |
+
# logger.warning("No valid candidates found")
|
199 |
+
# st.warning("No valid candidates found in the uploaded CVs")
|
200 |
+
|
201 |
+
# except Exception as e:
|
202 |
+
# logger.error(f"Analysis error: {str(e)}")
|
203 |
+
# st.error(f"An error occurred during analysis: {str(e)}")
|
204 |
+
# st.session_state.analysis_complete = False
|
205 |
+
|
206 |
+
# # Display analysis status
|
207 |
+
# if st.session_state.get('analysis_complete', False):
|
208 |
+
# st.success("CV analysis complete! You can now proceed to generate interview questions.")
|
209 |
+
|
210 |
+
|
211 |
+
def create_cv_shortlisting_page():
|
212 |
+
logger.info("Starting CV shortlisting system")
|
213 |
+
|
214 |
+
# Initialize session state if not already initialized
|
215 |
+
if 'jd_text' not in st.session_state:
|
216 |
+
st.session_state.jd_text = ""
|
217 |
+
if 'min_years' not in st.session_state:
|
218 |
+
st.session_state.min_years = 3
|
219 |
+
if 'required_skills_list' not in st.session_state:
|
220 |
+
st.session_state.required_skills_list = []
|
221 |
+
if 'uploaded_files' not in st.session_state:
|
222 |
+
st.session_state.uploaded_files = None
|
223 |
+
if 'results' not in st.session_state:
|
224 |
+
st.session_state.results = []
|
225 |
+
if 'analysis_complete' not in st.session_state:
|
226 |
+
st.session_state.analysis_complete = False
|
227 |
+
|
228 |
+
st.title("CV Shortlisting System")
|
229 |
+
|
230 |
+
# Job Description Input
|
231 |
+
st.header("Job Description")
|
232 |
+
jd_text = st.text_area("Enter the job description", value=st.session_state.jd_text)
|
233 |
+
if jd_text:
|
234 |
+
st.session_state.jd_text = jd_text
|
235 |
+
|
236 |
+
# Job Requirements Input
|
237 |
+
st.header("Job Requirements")
|
238 |
+
min_years = st.number_input("Minimum years of experience",
|
239 |
+
min_value=0,
|
240 |
+
value=st.session_state.min_years,
|
241 |
+
)
|
242 |
+
|
243 |
+
required_skills = st.text_input("Required skills (comma-separated)",
|
244 |
+
value=','.join(st.session_state.required_skills_list) if st.session_state.required_skills_list else "")
|
245 |
+
|
246 |
+
required_skills_list = [skill.strip() for skill in required_skills.split(",") if skill.strip()]
|
247 |
+
|
248 |
+
if required_skills_list:
|
249 |
+
st.session_state.required_skills_list = required_skills_list
|
250 |
+
if min_years:
|
251 |
+
st.session_state.min_years = min_years
|
252 |
+
|
253 |
+
# CV Upload
|
254 |
+
st.header("Upload CVs")
|
255 |
+
uploaded_files = st.file_uploader("Choose CV files",
|
256 |
+
accept_multiple_files=True,
|
257 |
+
type=['pdf', 'txt'],
|
258 |
+
key="unique_cv_upload")
|
259 |
+
|
260 |
+
if uploaded_files:
|
261 |
+
st.session_state.uploaded_files = uploaded_files
|
262 |
+
|
263 |
+
if st.button("Analyze CVs") and uploaded_files and jd_text:
|
264 |
+
logger.info("Analyzing uploaded CVs")
|
265 |
+
with st.spinner('Analyzing CVs...'):
|
266 |
+
analyzer = CVAnalyzer()
|
267 |
+
|
268 |
+
# Prepare job requirements
|
269 |
+
job_requirements = {
|
270 |
+
"min_years_experience": st.session_state.min_years,
|
271 |
+
"required_skills": st.session_state.required_skills_list
|
272 |
+
}
|
273 |
+
|
274 |
+
results = []
|
275 |
+
st.session_state.results = [] # Reset results for new analysis
|
276 |
+
|
277 |
+
# Process each CV
|
278 |
+
for uploaded_file in uploaded_files:
|
279 |
+
cv_text = extr.process_file(uploaded_file)
|
280 |
+
|
281 |
+
try:
|
282 |
+
candidates = analyzer.extract_cv_info(cv_text)
|
283 |
+
|
284 |
+
for candidate in candidates:
|
285 |
+
match_scores = analyzer.calculate_match_score(
|
286 |
+
candidate.__dict__,
|
287 |
+
job_requirements
|
288 |
+
)
|
289 |
+
|
290 |
+
result = {
|
291 |
+
"Name": candidate.name or "Unknown",
|
292 |
+
"Experience (Years)": candidate.years_of_exp or 0,
|
293 |
+
"Skills": ", ".join(candidate.skills) if candidate.skills else "None",
|
294 |
+
"Certifications": ", ".join(candidate.certifications) if candidate.certifications else "None",
|
295 |
+
"Skills Match": f"{match_scores['skills_match']:.2%}",
|
296 |
+
"Experience Match": f"{match_scores['experience_match']:.2%}",
|
297 |
+
"Overall Score": f"{match_scores['overall_score']:.2%}"
|
298 |
+
}
|
299 |
+
|
300 |
+
results.append(result)
|
301 |
+
st.session_state.results.append(result)
|
302 |
+
|
303 |
+
except Exception as e:
|
304 |
+
logger.error(f"Error processing CV: {str(e)}")
|
305 |
+
|
306 |
+
# Display results
|
307 |
+
logger.info(f"Displaying analyzed results for {len(results)} candidate(s)")
|
308 |
+
|
309 |
+
if st.session_state.results:
|
310 |
+
df = pd.DataFrame(st.session_state.results)
|
311 |
+
df = df.sort_values("Overall Score", ascending=False)
|
312 |
+
st.dataframe(df)
|
313 |
+
st.session_state.analysis_complete = True
|
314 |
+
else:
|
315 |
+
logger.warning("No valid candidates found in uploaded CVs")
|
316 |
+
st.error("No valid results found from CV analysis")
|
317 |
+
st.session_state.analysis_complete = False
|
extraction.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Optional
|
3 |
+
from pydantic import BaseModel, Field
|
4 |
+
from langchain.prompts import ChatPromptTemplate
|
5 |
+
from langchain_groq import ChatGroq
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
import streamlit as st
|
9 |
+
from langchain_community.document_loaders import PDFPlumberLoader, TextLoader
|
10 |
+
|
11 |
+
|
12 |
+
# logging
|
13 |
+
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
# Defining the CV structure using Pydantic for structured output
|
17 |
+
class cv(BaseModel):
|
18 |
+
name: Optional[str] = Field(default=None, description="Name of candidate")
|
19 |
+
skills: Optional[list[str]] = Field(default=None, description="Skills of candidate")
|
20 |
+
certifications: Optional[list[str]] = Field(default=None, description="Certificates of candidate")
|
21 |
+
years_of_exp: Optional[int] = Field(default=None, description="Years of experience")
|
22 |
+
|
23 |
+
# Defining the data structure that contains a list of CVs
|
24 |
+
class data(BaseModel):
|
25 |
+
candidates: list[cv]
|
26 |
+
|
27 |
+
def create_prompt_template() -> ChatPromptTemplate:
|
28 |
+
|
29 |
+
logger.info("Creating the prompt template for CV extraction")
|
30 |
+
|
31 |
+
"""Create the prompt template for CV extraction."""
|
32 |
+
|
33 |
+
return ChatPromptTemplate.from_messages(
|
34 |
+
[
|
35 |
+
("system",
|
36 |
+
"You are an expert extraction algorithm. Your job is to extract the following specific information from the given text:"
|
37 |
+
"- Name of the candidate"
|
38 |
+
"- Skills"
|
39 |
+
"- Certifications (Look for terms such as 'Certified,' 'Certification,' 'Certificate')"
|
40 |
+
"- years_of_exp (Extract only the number of years. If an approximation is given (e.g., '5+ years'), return the lower bound (e.g., '5').)"
|
41 |
+
"If you cannot find the value for a specific attribute, return null for that attribute's value."
|
42 |
+
"The 'years of experience' can be mentioned in various formats (e.g., '5+ years', '5 years', 'since 2010'). "
|
43 |
+
"Extract it accurately, even if it's mentioned in different contexts like a professional summary or work experience. "
|
44 |
+
"If multiple jobs are listed, you can calculate the experience from the work history."
|
45 |
+
"Certifications are usually found under headers like 'Certifications,' 'Professional Certificates,' or similar. They might include phrases like 'AWS Certified Developer,' 'MongoDB Developer Associate,' etc."
|
46 |
+
),
|
47 |
+
("human", "{text}")
|
48 |
+
]
|
49 |
+
)
|
50 |
+
|
51 |
+
def initialize_llm() -> ChatGroq:
|
52 |
+
logger.info("Initializing LLM")
|
53 |
+
|
54 |
+
"""Initialize the language model."""
|
55 |
+
|
56 |
+
os.environ['GROQ_API_KEY'] = os.getenv("GROQ_API_KEY")
|
57 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
58 |
+
|
59 |
+
if not groq_api_key:
|
60 |
+
logger.error("GROQ_API_KEY is not set")
|
61 |
+
raise ValueError("GROQ_API_KEY environment variable is missing.")
|
62 |
+
|
63 |
+
|
64 |
+
return ChatGroq(groq_api_key=groq_api_key, model_name="llama-3.1-70b-versatile", temperature=0.6)
|
65 |
+
|
66 |
+
|
67 |
+
def extract_cv_data(text: str) -> list[cv]:
|
68 |
+
logger.info("Extracting CV data from text")
|
69 |
+
|
70 |
+
"""Extract data from the text using the language model."""
|
71 |
+
|
72 |
+
prompt = create_prompt_template()
|
73 |
+
llm = initialize_llm()
|
74 |
+
|
75 |
+
# creating a chain to extract structred ouput from the text using schema
|
76 |
+
runnable = prompt | llm.with_structured_output(schema=data)
|
77 |
+
response = runnable.invoke({"text": text})
|
78 |
+
|
79 |
+
logger.info(f"Extracted {len(response.candidates)} candidate(s) from the text")
|
80 |
+
|
81 |
+
return response.candidates # returns the list of candidates
|
82 |
+
|
83 |
+
def process_file(uploaded_files) -> str:
|
84 |
+
logger.info(f"Processing file: {uploaded_files.name}")
|
85 |
+
|
86 |
+
"""Process the uploaded file and return the text."""
|
87 |
+
|
88 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_files.name)[1]) as tmp_file:
|
89 |
+
tmp_file.write(uploaded_files.getvalue())
|
90 |
+
tmp_path = tmp_file.name
|
91 |
+
try:
|
92 |
+
if tmp_path.endswith('.pdf'):
|
93 |
+
loader = PDFPlumberLoader(tmp_path)
|
94 |
+
logger.info(f"Loaded PDF file: {tmp_path}")
|
95 |
+
|
96 |
+
else:
|
97 |
+
loader = TextLoader(tmp_path)
|
98 |
+
logger.info(f"Loaded text file: {tmp_path}")
|
99 |
+
|
100 |
+
documents = loader.load()
|
101 |
+
# return " ".join([doc.page_content for doc in documents])
|
102 |
+
text_content = " ".join([doc.page_content for doc in documents])
|
103 |
+
logger.info(f"Extracted text from file: {uploaded_files.name}")
|
104 |
+
return text_content
|
105 |
+
|
106 |
+
finally:
|
107 |
+
logger.info(f"Deleting temporary file: {tmp_path}")
|
108 |
+
os.unlink(tmp_path)
|
109 |
+
|
110 |
+
def display_candidates_info(candidates_list: list[cv]):
|
111 |
+
logger.info(f"Displaying information for {len(candidates_list)} candidate(s)")
|
112 |
+
|
113 |
+
"""Display the extracted candidates' information in a table."""
|
114 |
+
|
115 |
+
logger.debug(f"Candidate list: {candidates_list}")
|
116 |
+
|
117 |
+
data = []
|
118 |
+
for candidate in candidates_list:
|
119 |
+
data.append({
|
120 |
+
"Name": candidate.name,
|
121 |
+
"Skills": ", ".join(candidate.skills) if candidate.skills else 'None',
|
122 |
+
"Certifications": ", ".join(candidate.certifications) if candidate.certifications else 'None',
|
123 |
+
"Years of Experience": candidate.years_of_exp if candidate.years_of_exp else 'None'
|
124 |
+
})
|
125 |
+
|
126 |
+
st.write("### Candidates Information")
|
127 |
+
st.table(data)
|
128 |
+
logger.debug("Displayed candidates' information in table")
|
129 |
+
# print(candidates_list)
|
130 |
+
|
131 |
+
# Try this to see the working of extraction
|
132 |
+
# Streamlit file uploader and extraction logic
|
133 |
+
# uploaded_files = st.file_uploader(" Upload the CV: ", type=['pdf', 'txt'],key="unique_cv_upload")
|
134 |
+
# if uploaded_files is not None:
|
135 |
+
# text = process_file(uploaded_files)
|
136 |
+
# # text = ep.text
|
137 |
+
# candidates_list = extract_cv_data(text)
|
138 |
+
# display_candidates_info(candidates_list)
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
python-dotenv
|
3 |
+
ipykernel
|
4 |
+
langchain-community
|
5 |
+
streamlit
|
6 |
+
pypdf
|
7 |
+
pymupdf
|
8 |
+
langchain-text-splitters
|
9 |
+
langchain-openai
|
10 |
+
chromadb
|
11 |
+
sentence_transformers
|
12 |
+
langchain_huggingface
|
13 |
+
faiss-cpu
|
14 |
+
langchain_chroma
|
15 |
+
openai
|
16 |
+
langchain-groq
|
17 |
+
pdfplumber
|
18 |
+
prettytable
|