Spaces:
Sleeping
Sleeping
bsiddhharth
commited on
Commit
·
c626607
1
Parent(s):
50c3f7b
Updated the groq_api to deploy in streamlit , commanded the logger
Browse files- app.py +8 -8
- cv_analyzer_search.py +17 -17
- cv_short.py +16 -15
- resume_advance_analysis.py +10 -10
app.py
CHANGED
@@ -3,7 +3,7 @@ import streamlit as st
|
|
3 |
import cv_question
|
4 |
import cv_short
|
5 |
import cv_analyzer_search
|
6 |
-
from logger import setup_logger
|
7 |
|
8 |
# def initialize_session_state():
|
9 |
# """Initialize all session state variables with default values."""
|
@@ -31,27 +31,27 @@ def clear_session_state():
|
|
31 |
|
32 |
def main():
|
33 |
# Setup logger for app
|
34 |
-
app_logger = setup_logger('app_logger', 'app.log')
|
35 |
|
36 |
# initialize_session_state()
|
37 |
|
38 |
# Sidebar
|
39 |
st.sidebar.title("Navigation")
|
40 |
-
app_logger.info("Sidebar navigation displayed")
|
41 |
|
42 |
# Add reset button in sidebar
|
43 |
if st.sidebar.button("Reset All Data"):
|
44 |
clear_session_state()
|
45 |
st.sidebar.success("All data has been reset!")
|
46 |
-
app_logger.info("Session state reset")
|
47 |
|
48 |
# Navigation
|
49 |
page = st.sidebar.radio("Go to", ["CV Shortlisting", "Interview Questions","CV Analyser + JobSearch"])
|
50 |
-
app_logger.info(f"Page selected: {page}")
|
51 |
|
52 |
try:
|
53 |
if page == "CV Shortlisting":
|
54 |
-
app_logger.info("Navigating to CV Shortlisting")
|
55 |
cv_short.create_cv_shortlisting_page()
|
56 |
|
57 |
elif page == "Interview Questions":
|
@@ -60,14 +60,14 @@ def main():
|
|
60 |
# st.warning("Please complete the CV shortlisting process first.")
|
61 |
# app_logger.warning("Attempted to access Interview Questions without completing CV shortlisting")
|
62 |
# else:
|
63 |
-
app_logger.info("Navigating to Interview Questions")
|
64 |
cv_question.create_interview_questions_page()
|
65 |
|
66 |
elif page == "CV Analyser + JobSearch":
|
67 |
cv_analyzer_search.Job_assistant()
|
68 |
|
69 |
except Exception as e:
|
70 |
-
app_logger.error(f"Error occurred: {e}")
|
71 |
st.error(f"An error occurred: {e}")
|
72 |
|
73 |
if __name__ == "__main__":
|
|
|
3 |
import cv_question
|
4 |
import cv_short
|
5 |
import cv_analyzer_search
|
6 |
+
# from logger import setup_logger
|
7 |
|
8 |
# def initialize_session_state():
|
9 |
# """Initialize all session state variables with default values."""
|
|
|
31 |
|
32 |
def main():
|
33 |
# Setup logger for app
|
34 |
+
# app_logger = setup_logger('app_logger', 'app.log')
|
35 |
|
36 |
# initialize_session_state()
|
37 |
|
38 |
# Sidebar
|
39 |
st.sidebar.title("Navigation")
|
40 |
+
# app_logger.info("Sidebar navigation displayed")
|
41 |
|
42 |
# Add reset button in sidebar
|
43 |
if st.sidebar.button("Reset All Data"):
|
44 |
clear_session_state()
|
45 |
st.sidebar.success("All data has been reset!")
|
46 |
+
# app_logger.info("Session state reset")
|
47 |
|
48 |
# Navigation
|
49 |
page = st.sidebar.radio("Go to", ["CV Shortlisting", "Interview Questions","CV Analyser + JobSearch"])
|
50 |
+
# app_logger.info(f"Page selected: {page}")
|
51 |
|
52 |
try:
|
53 |
if page == "CV Shortlisting":
|
54 |
+
# app_logger.info("Navigating to CV Shortlisting")
|
55 |
cv_short.create_cv_shortlisting_page()
|
56 |
|
57 |
elif page == "Interview Questions":
|
|
|
60 |
# st.warning("Please complete the CV shortlisting process first.")
|
61 |
# app_logger.warning("Attempted to access Interview Questions without completing CV shortlisting")
|
62 |
# else:
|
63 |
+
# app_logger.info("Navigating to Interview Questions")
|
64 |
cv_question.create_interview_questions_page()
|
65 |
|
66 |
elif page == "CV Analyser + JobSearch":
|
67 |
cv_analyzer_search.Job_assistant()
|
68 |
|
69 |
except Exception as e:
|
70 |
+
# app_logger.error(f"Error occurred: {e}")
|
71 |
st.error(f"An error occurred: {e}")
|
72 |
|
73 |
if __name__ == "__main__":
|
cv_analyzer_search.py
CHANGED
@@ -29,8 +29,8 @@ def make_clickable_link(link):
|
|
29 |
groq_api_key = st.secrets["GROQ_API_KEY"]
|
30 |
|
31 |
# Configure logging
|
32 |
-
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
33 |
-
logger = logging.getLogger(__name__)
|
34 |
|
35 |
class JobSuggestionEngine:
|
36 |
def __init__(self):
|
@@ -48,7 +48,7 @@ class JobSuggestionEngine:
|
|
48 |
Extracting JSON from LLM
|
49 |
"""
|
50 |
try:
|
51 |
-
logger.debug("Extracting JSON from LLM response")
|
52 |
# Clean and extract JSON
|
53 |
json_match = re.search(r'\{.*\}', text, re.DOTALL)
|
54 |
if json_match:
|
@@ -57,12 +57,12 @@ class JobSuggestionEngine:
|
|
57 |
|
58 |
except Exception as e:
|
59 |
st.error(f"JSON Extraction Error: {e}")
|
60 |
-
logger.error(f"JSON Extraction Error: {e}")
|
61 |
return {}
|
62 |
|
63 |
def generate_job_suggestions(self, resume_data: cv) -> List[Dict[str, str]]:
|
64 |
|
65 |
-
logger.info("Generating job suggestions based on resume")
|
66 |
|
67 |
prompt = f"""Based on the following resume details, provide job suggestions:
|
68 |
|
@@ -91,7 +91,7 @@ class JobSuggestionEngine:
|
|
91 |
"""
|
92 |
try:
|
93 |
|
94 |
-
logger.debug(f"Calling Groq API with prompt: {prompt[:100]}...") # start of api call
|
95 |
|
96 |
# API call to the Groq client for chat completions
|
97 |
chat_completion = self.client.chat.completions.create(
|
@@ -111,14 +111,14 @@ class JobSuggestionEngine:
|
|
111 |
response_text = chat_completion.choices[0].message.content
|
112 |
suggestions_data = self._extract_json(response_text)
|
113 |
|
114 |
-
logger.info(f"Job suggestions generated: {len(suggestions_data.get('job_suggestions', []))} found")
|
115 |
|
116 |
# Return job suggestions, if not found -> empty list
|
117 |
return suggestions_data.get('job_suggestions', [])
|
118 |
|
119 |
except Exception as e:
|
120 |
st.error(f"Job Suggestion Error: {e}")
|
121 |
-
logger.error(f"Job Suggestion Error: {e}")
|
122 |
return []
|
123 |
|
124 |
def Job_assistant():
|
@@ -181,14 +181,14 @@ def Job_assistant():
|
|
181 |
try:
|
182 |
# Extract resume text
|
183 |
resume_text = process_file(uploaded_resume)
|
184 |
-
logger.info("Resume extracted successfully")
|
185 |
|
186 |
# Extract structured CV data
|
187 |
candidates = extract_cv_data(resume_text)
|
188 |
|
189 |
if not candidates:
|
190 |
st.error("Could not extract resume data")
|
191 |
-
logger.error("No candidates extracted from resume")
|
192 |
st.stop()
|
193 |
|
194 |
st.session_state.resume_data = candidates[0]
|
@@ -201,17 +201,17 @@ def Job_assistant():
|
|
201 |
|
202 |
except Exception as e:
|
203 |
st.error(f"Resume Processing Error: {e}")
|
204 |
-
logger.error(f"Resume Processing Error: {e}")
|
205 |
st.stop()
|
206 |
|
207 |
# Initialize Job Suggestion Engine
|
208 |
if st.session_state.resume_data:
|
209 |
suggestion_engine = JobSuggestionEngine()
|
210 |
-
logger.info("Job_Suggestion_Engine initialized")
|
211 |
|
212 |
# Generate Job Suggestions
|
213 |
job_suggestions = suggestion_engine.generate_job_suggestions(resume_data)
|
214 |
-
logger.info(f"Generated {len(job_suggestions)} job suggestions")
|
215 |
|
216 |
st.session_state.job_suggestions = job_suggestions
|
217 |
|
@@ -227,14 +227,14 @@ def Job_assistant():
|
|
227 |
try:
|
228 |
# Extract resume text
|
229 |
resume_text = process_file(uploaded_resume)
|
230 |
-
logger.info("Resume text extracted again for improvement suggestions")
|
231 |
|
232 |
# Initialize Resume Improvement Engine
|
233 |
improvement_engine = ResumeImprovementEngine()
|
234 |
|
235 |
# Generate Improvement Suggestions
|
236 |
improvement_suggestions = improvement_engine.generate_resume_improvement_suggestions(resume_text)
|
237 |
-
logger.info("Resume improvement suggestions generated")
|
238 |
st.session_state.improvement_suggestions = improvement_suggestions
|
239 |
|
240 |
# Display Suggestions
|
@@ -304,7 +304,7 @@ def Job_assistant():
|
|
304 |
|
305 |
except Exception as e:
|
306 |
st.error(f"Resume Improvement Analysis Error: {e}")
|
307 |
-
logger.error(f"Resume Improvement Analysis Error: {e}")
|
308 |
|
309 |
|
310 |
with tab2:
|
@@ -386,7 +386,7 @@ def Job_assistant():
|
|
386 |
|
387 |
except Exception as e:
|
388 |
st.error(f"Job Search Error: {e}")
|
389 |
-
logger.error(f"Job Search Error: {e}")
|
390 |
# col1, col2, col3, col4 = st.columns(4)
|
391 |
|
392 |
# with col1:
|
|
|
29 |
groq_api_key = st.secrets["GROQ_API_KEY"]
|
30 |
|
31 |
# Configure logging
|
32 |
+
# logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
33 |
+
# logger = logging.getLogger(__name__)
|
34 |
|
35 |
class JobSuggestionEngine:
|
36 |
def __init__(self):
|
|
|
48 |
Extracting JSON from LLM
|
49 |
"""
|
50 |
try:
|
51 |
+
# logger.debug("Extracting JSON from LLM response")
|
52 |
# Clean and extract JSON
|
53 |
json_match = re.search(r'\{.*\}', text, re.DOTALL)
|
54 |
if json_match:
|
|
|
57 |
|
58 |
except Exception as e:
|
59 |
st.error(f"JSON Extraction Error: {e}")
|
60 |
+
# logger.error(f"JSON Extraction Error: {e}")
|
61 |
return {}
|
62 |
|
63 |
def generate_job_suggestions(self, resume_data: cv) -> List[Dict[str, str]]:
|
64 |
|
65 |
+
# logger.info("Generating job suggestions based on resume")
|
66 |
|
67 |
prompt = f"""Based on the following resume details, provide job suggestions:
|
68 |
|
|
|
91 |
"""
|
92 |
try:
|
93 |
|
94 |
+
# logger.debug(f"Calling Groq API with prompt: {prompt[:100]}...") # start of api call
|
95 |
|
96 |
# API call to the Groq client for chat completions
|
97 |
chat_completion = self.client.chat.completions.create(
|
|
|
111 |
response_text = chat_completion.choices[0].message.content
|
112 |
suggestions_data = self._extract_json(response_text)
|
113 |
|
114 |
+
# logger.info(f"Job suggestions generated: {len(suggestions_data.get('job_suggestions', []))} found")
|
115 |
|
116 |
# Return job suggestions, if not found -> empty list
|
117 |
return suggestions_data.get('job_suggestions', [])
|
118 |
|
119 |
except Exception as e:
|
120 |
st.error(f"Job Suggestion Error: {e}")
|
121 |
+
# logger.error(f"Job Suggestion Error: {e}")
|
122 |
return []
|
123 |
|
124 |
def Job_assistant():
|
|
|
181 |
try:
|
182 |
# Extract resume text
|
183 |
resume_text = process_file(uploaded_resume)
|
184 |
+
# logger.info("Resume extracted successfully")
|
185 |
|
186 |
# Extract structured CV data
|
187 |
candidates = extract_cv_data(resume_text)
|
188 |
|
189 |
if not candidates:
|
190 |
st.error("Could not extract resume data")
|
191 |
+
# logger.error("No candidates extracted from resume")
|
192 |
st.stop()
|
193 |
|
194 |
st.session_state.resume_data = candidates[0]
|
|
|
201 |
|
202 |
except Exception as e:
|
203 |
st.error(f"Resume Processing Error: {e}")
|
204 |
+
# logger.error(f"Resume Processing Error: {e}")
|
205 |
st.stop()
|
206 |
|
207 |
# Initialize Job Suggestion Engine
|
208 |
if st.session_state.resume_data:
|
209 |
suggestion_engine = JobSuggestionEngine()
|
210 |
+
# logger.info("Job_Suggestion_Engine initialized")
|
211 |
|
212 |
# Generate Job Suggestions
|
213 |
job_suggestions = suggestion_engine.generate_job_suggestions(resume_data)
|
214 |
+
# logger.info(f"Generated {len(job_suggestions)} job suggestions")
|
215 |
|
216 |
st.session_state.job_suggestions = job_suggestions
|
217 |
|
|
|
227 |
try:
|
228 |
# Extract resume text
|
229 |
resume_text = process_file(uploaded_resume)
|
230 |
+
# logger.info("Resume text extracted again for improvement suggestions")
|
231 |
|
232 |
# Initialize Resume Improvement Engine
|
233 |
improvement_engine = ResumeImprovementEngine()
|
234 |
|
235 |
# Generate Improvement Suggestions
|
236 |
improvement_suggestions = improvement_engine.generate_resume_improvement_suggestions(resume_text)
|
237 |
+
# logger.info("Resume improvement suggestions generated")
|
238 |
st.session_state.improvement_suggestions = improvement_suggestions
|
239 |
|
240 |
# Display Suggestions
|
|
|
304 |
|
305 |
except Exception as e:
|
306 |
st.error(f"Resume Improvement Analysis Error: {e}")
|
307 |
+
# logger.error(f"Resume Improvement Analysis Error: {e}")
|
308 |
|
309 |
|
310 |
with tab2:
|
|
|
386 |
|
387 |
except Exception as e:
|
388 |
st.error(f"Job Search Error: {e}")
|
389 |
+
# logger.error(f"Job Search Error: {e}")
|
390 |
# col1, col2, col3, col4 = st.columns(4)
|
391 |
|
392 |
# with col1:
|
cv_short.py
CHANGED
@@ -5,26 +5,26 @@ import streamlit as st
|
|
5 |
import pandas as pd
|
6 |
|
7 |
# Configure logging
|
8 |
-
logging.basicConfig(level=logging.DEBUG , format='%(asctime)s - %(levelname)s - %(message)s')
|
9 |
-
logger = logging.getLogger(__name__)
|
10 |
|
11 |
|
12 |
class CVAnalyzer:
|
13 |
|
14 |
def __init__(self):
|
15 |
# Initialize Groq LLM
|
16 |
-
logger.info("Initializing CVAnalyzer")
|
17 |
|
18 |
self.llm = extr.initialize_llm() # Updated to use the new function
|
19 |
|
20 |
-
logger.info(" LLM initialized")
|
21 |
# Initialize embeddings (if needed)
|
22 |
# self.embeddings = HuggingFaceEmbeddings(
|
23 |
# model_name="sentence-transformers/all-mpnet-base-v2"
|
24 |
# )
|
25 |
|
26 |
def load_document(self, file_path: str) -> str:
|
27 |
-
logger.info(f"Loading document from file: {file_path}")
|
28 |
|
29 |
"""Load document based on file type."""
|
30 |
|
@@ -34,22 +34,22 @@ class CVAnalyzer:
|
|
34 |
loader = TextLoader(file_path)
|
35 |
documents = loader.load()
|
36 |
|
37 |
-
logger.info(f"Document loaded from {file_path}")
|
38 |
|
39 |
return " ".join([doc.page_content for doc in documents])
|
40 |
|
41 |
def extract_cv_info(self, cv_text: str) -> list[extr.cv]: # referring to cv class in extraction.py
|
42 |
-
logger.info("Extracting CV information")
|
43 |
|
44 |
"""Extract structured information from CV text using new extraction method."""
|
45 |
|
46 |
extracted_data = extr.extract_cv_data(cv_text)
|
47 |
-
logger.info(f"Extracted {len(extracted_data)} candidate(s) from CV")
|
48 |
return extracted_data
|
49 |
# return extr.extract_cv_data(cv_text)
|
50 |
|
51 |
def calculate_match_score(self, cv_info: dict, jd_requirements: dict) -> dict:
|
52 |
-
logger.info(f"Calculating match score for CV: {cv_info.get('name', 'Unknown')}")
|
53 |
|
54 |
"""Calculate match score between CV and job requirements."""
|
55 |
|
@@ -80,7 +80,7 @@ class CVAnalyzer:
|
|
80 |
if component != "overall_score"
|
81 |
)
|
82 |
|
83 |
-
logger.debug(f"Match score for {cv_info.get('name', 'Unknown')}: {score_components['overall_score']:.2%}")
|
84 |
|
85 |
return score_components
|
86 |
|
@@ -209,7 +209,7 @@ class CVAnalyzer:
|
|
209 |
|
210 |
|
211 |
def create_cv_shortlisting_page():
|
212 |
-
logger.info("Starting CV shortlisting system")
|
213 |
|
214 |
# Initialize session state if not already initialized
|
215 |
if 'jd_text' not in st.session_state:
|
@@ -261,7 +261,7 @@ def create_cv_shortlisting_page():
|
|
261 |
st.session_state.uploaded_files = uploaded_files
|
262 |
|
263 |
if st.button("Analyze CVs") and uploaded_files and jd_text:
|
264 |
-
logger.info("Analyzing uploaded CVs")
|
265 |
with st.spinner('Analyzing CVs...'):
|
266 |
analyzer = CVAnalyzer()
|
267 |
|
@@ -301,10 +301,11 @@ def create_cv_shortlisting_page():
|
|
301 |
st.session_state.results.append(result)
|
302 |
|
303 |
except Exception as e:
|
304 |
-
|
|
|
305 |
|
306 |
# Display results
|
307 |
-
logger.info(f"Displaying analyzed results for {len(results)} candidate(s)")
|
308 |
|
309 |
if st.session_state.results:
|
310 |
df = pd.DataFrame(st.session_state.results)
|
@@ -312,6 +313,6 @@ def create_cv_shortlisting_page():
|
|
312 |
st.dataframe(df)
|
313 |
st.session_state.analysis_complete = True
|
314 |
else:
|
315 |
-
logger.warning("No valid candidates found in uploaded CVs")
|
316 |
st.error("No valid results found from CV analysis")
|
317 |
st.session_state.analysis_complete = False
|
|
|
5 |
import pandas as pd
|
6 |
|
7 |
# Configure logging
|
8 |
+
# logging.basicConfig(level=logging.DEBUG , format='%(asctime)s - %(levelname)s - %(message)s')
|
9 |
+
# logger = logging.getLogger(__name__)
|
10 |
|
11 |
|
12 |
class CVAnalyzer:
|
13 |
|
14 |
def __init__(self):
|
15 |
# Initialize Groq LLM
|
16 |
+
# logger.info("Initializing CVAnalyzer")
|
17 |
|
18 |
self.llm = extr.initialize_llm() # Updated to use the new function
|
19 |
|
20 |
+
# logger.info(" LLM initialized")
|
21 |
# Initialize embeddings (if needed)
|
22 |
# self.embeddings = HuggingFaceEmbeddings(
|
23 |
# model_name="sentence-transformers/all-mpnet-base-v2"
|
24 |
# )
|
25 |
|
26 |
def load_document(self, file_path: str) -> str:
|
27 |
+
# logger.info(f"Loading document from file: {file_path}")
|
28 |
|
29 |
"""Load document based on file type."""
|
30 |
|
|
|
34 |
loader = TextLoader(file_path)
|
35 |
documents = loader.load()
|
36 |
|
37 |
+
# logger.info(f"Document loaded from {file_path}")
|
38 |
|
39 |
return " ".join([doc.page_content for doc in documents])
|
40 |
|
41 |
def extract_cv_info(self, cv_text: str) -> list[extr.cv]: # referring to cv class in extraction.py
|
42 |
+
# logger.info("Extracting CV information")
|
43 |
|
44 |
"""Extract structured information from CV text using new extraction method."""
|
45 |
|
46 |
extracted_data = extr.extract_cv_data(cv_text)
|
47 |
+
# logger.info(f"Extracted {len(extracted_data)} candidate(s) from CV")
|
48 |
return extracted_data
|
49 |
# return extr.extract_cv_data(cv_text)
|
50 |
|
51 |
def calculate_match_score(self, cv_info: dict, jd_requirements: dict) -> dict:
|
52 |
+
# logger.info(f"Calculating match score for CV: {cv_info.get('name', 'Unknown')}")
|
53 |
|
54 |
"""Calculate match score between CV and job requirements."""
|
55 |
|
|
|
80 |
if component != "overall_score"
|
81 |
)
|
82 |
|
83 |
+
# logger.debug(f"Match score for {cv_info.get('name', 'Unknown')}: {score_components['overall_score']:.2%}")
|
84 |
|
85 |
return score_components
|
86 |
|
|
|
209 |
|
210 |
|
211 |
def create_cv_shortlisting_page():
|
212 |
+
# logger.info("Starting CV shortlisting system")
|
213 |
|
214 |
# Initialize session state if not already initialized
|
215 |
if 'jd_text' not in st.session_state:
|
|
|
261 |
st.session_state.uploaded_files = uploaded_files
|
262 |
|
263 |
if st.button("Analyze CVs") and uploaded_files and jd_text:
|
264 |
+
# logger.info("Analyzing uploaded CVs")
|
265 |
with st.spinner('Analyzing CVs...'):
|
266 |
analyzer = CVAnalyzer()
|
267 |
|
|
|
301 |
st.session_state.results.append(result)
|
302 |
|
303 |
except Exception as e:
|
304 |
+
st.error(f"Error processing CV: {str(e)}")
|
305 |
+
# logger.error(f"Error processing CV: {str(e)}")
|
306 |
|
307 |
# Display results
|
308 |
+
# logger.info(f"Displaying analyzed results for {len(results)} candidate(s)")
|
309 |
|
310 |
if st.session_state.results:
|
311 |
df = pd.DataFrame(st.session_state.results)
|
|
|
313 |
st.dataframe(df)
|
314 |
st.session_state.analysis_complete = True
|
315 |
else:
|
316 |
+
# logger.warning("No valid candidates found in uploaded CVs")
|
317 |
st.error("No valid results found from CV analysis")
|
318 |
st.session_state.analysis_complete = False
|
resume_advance_analysis.py
CHANGED
@@ -6,8 +6,8 @@ import re
|
|
6 |
import os
|
7 |
import logging
|
8 |
|
9 |
-
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
10 |
-
logger = logging.getLogger(__name__)
|
11 |
|
12 |
|
13 |
os.environ['GROQ_API_KEY'] = os.getenv("GROQ_API_KEY")
|
@@ -22,7 +22,7 @@ class ResumeImprovementEngine:
|
|
22 |
# max_tokens=4096
|
23 |
# )
|
24 |
self.client = Groq(api_key=groq_api_key)
|
25 |
-
logger.info("ResumeImprovementEngine initialized with Groq API key.")
|
26 |
|
27 |
def generate_resume_improvement_suggestions(self, resume_text: str) -> dict[str, Any]:
|
28 |
"""
|
@@ -79,7 +79,7 @@ class ResumeImprovementEngine:
|
|
79 |
"""
|
80 |
|
81 |
try:
|
82 |
-
logger.info("Sending request to Groq for resume improvement.")
|
83 |
# Make API call to generate improvement suggestions
|
84 |
chat_completion = self.client.chat.completions.create(
|
85 |
messages=[
|
@@ -99,19 +99,19 @@ class ResumeImprovementEngine:
|
|
99 |
stream=False
|
100 |
)
|
101 |
|
102 |
-
logger.info("Groq API response received.")
|
103 |
|
104 |
# Extract and parse the JSON response
|
105 |
response_text = chat_completion.choices[0].message.content
|
106 |
suggestions = self._extract_json(response_text)
|
107 |
|
108 |
-
logger.debug(f"Improvement suggestions received: {suggestions}")
|
109 |
|
110 |
return suggestions
|
111 |
|
112 |
except Exception as e:
|
113 |
st.error(f"Resume Improvement Error: {e}")
|
114 |
-
logger.error(f"Resume Improvement Error: {e}")
|
115 |
return {}
|
116 |
|
117 |
|
@@ -126,19 +126,19 @@ class ResumeImprovementEngine:
|
|
126 |
Dict of extracted JSON or empty dict
|
127 |
"""
|
128 |
try:
|
129 |
-
logger.debug("Extracting JSON from response text.")
|
130 |
|
131 |
json_match = re.search(r'\{.*\}', text, re.DOTALL | re.MULTILINE)
|
132 |
if json_match:
|
133 |
return json.loads(json_match.group(0))
|
134 |
|
135 |
-
logger.warning("No valid JSON found in response text.")
|
136 |
|
137 |
return {}
|
138 |
|
139 |
except Exception as e:
|
140 |
st.error(f"JSON Extraction Error: {e}")
|
141 |
-
logger.error(f"JSON Extraction Error: {e}")
|
142 |
return {}
|
143 |
|
144 |
|
|
|
6 |
import os
|
7 |
import logging
|
8 |
|
9 |
+
# logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
10 |
+
# logger = logging.getLogger(__name__)
|
11 |
|
12 |
|
13 |
os.environ['GROQ_API_KEY'] = os.getenv("GROQ_API_KEY")
|
|
|
22 |
# max_tokens=4096
|
23 |
# )
|
24 |
self.client = Groq(api_key=groq_api_key)
|
25 |
+
# logger.info("ResumeImprovementEngine initialized with Groq API key.")
|
26 |
|
27 |
def generate_resume_improvement_suggestions(self, resume_text: str) -> dict[str, Any]:
|
28 |
"""
|
|
|
79 |
"""
|
80 |
|
81 |
try:
|
82 |
+
# logger.info("Sending request to Groq for resume improvement.")
|
83 |
# Make API call to generate improvement suggestions
|
84 |
chat_completion = self.client.chat.completions.create(
|
85 |
messages=[
|
|
|
99 |
stream=False
|
100 |
)
|
101 |
|
102 |
+
# logger.info("Groq API response received.")
|
103 |
|
104 |
# Extract and parse the JSON response
|
105 |
response_text = chat_completion.choices[0].message.content
|
106 |
suggestions = self._extract_json(response_text)
|
107 |
|
108 |
+
# logger.debug(f"Improvement suggestions received: {suggestions}")
|
109 |
|
110 |
return suggestions
|
111 |
|
112 |
except Exception as e:
|
113 |
st.error(f"Resume Improvement Error: {e}")
|
114 |
+
# logger.error(f"Resume Improvement Error: {e}")
|
115 |
return {}
|
116 |
|
117 |
|
|
|
126 |
Dict of extracted JSON or empty dict
|
127 |
"""
|
128 |
try:
|
129 |
+
# logger.debug("Extracting JSON from response text.")
|
130 |
|
131 |
json_match = re.search(r'\{.*\}', text, re.DOTALL | re.MULTILINE)
|
132 |
if json_match:
|
133 |
return json.loads(json_match.group(0))
|
134 |
|
135 |
+
# logger.warning("No valid JSON found in response text.")
|
136 |
|
137 |
return {}
|
138 |
|
139 |
except Exception as e:
|
140 |
st.error(f"JSON Extraction Error: {e}")
|
141 |
+
# logger.error(f"JSON Extraction Error: {e}")
|
142 |
return {}
|
143 |
|
144 |
|