Spaces:
Sleeping
Sleeping
bsiddhharth
commited on
Commit
·
df852e4
1
Parent(s):
9c5f440
Added rag.py - includes -> taking pdf's as input and chat with it along with the history
Browse files- .gitignore +11 -0
- rag.py +283 -0
- requirements.txt +18 -0
.gitignore
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ignore virtual environment
|
2 |
+
venv2/
|
3 |
+
|
4 |
+
# Ignore environment files
|
5 |
+
.env
|
6 |
+
|
7 |
+
# Ignore Python compiled files
|
8 |
+
*.pyc
|
9 |
+
__pycache__/
|
10 |
+
|
11 |
+
temp.pdf
|
rag.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.chains import create_history_aware_retriever, create_retrieval_chain
|
2 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain # combining the entire doc and send it to the context
|
3 |
+
from langchain_chroma import Chroma
|
4 |
+
from langchain_community.chat_message_histories import ChatMessageHistory
|
5 |
+
from langchain_core.chat_history import BaseChatMessageHistory
|
6 |
+
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
+
from langchain_core.runnables.history import RunnableWithMessageHistory
|
9 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
10 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
11 |
+
from langchain_community.document_loaders import PyPDFLoader
|
12 |
+
from langchain_community.vectorstores import FAISS
|
13 |
+
import os
|
14 |
+
import streamlit as st
|
15 |
+
|
16 |
+
from dotenv import load_dotenv
|
17 |
+
load_dotenv()
|
18 |
+
|
19 |
+
|
20 |
+
os.environ['HF_TOKEN']=os.getenv("HF_TOKEN")
|
21 |
+
embeddings=HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
22 |
+
os.environ['GROQ_API_KEY']=os.getenv("GROQ_API_KEY")
|
23 |
+
groq_api_key=os.getenv("GROQ_API_KEY")
|
24 |
+
|
25 |
+
|
26 |
+
def initialize_session_state():
|
27 |
+
"""Initialize session state variables if they don't exist."""
|
28 |
+
session_state_defaults = {
|
29 |
+
'vectorstore': None,
|
30 |
+
'retriever': None,
|
31 |
+
'conversation_chain': None,
|
32 |
+
'chat_history': [],
|
33 |
+
'uploaded_file_names': set()
|
34 |
+
}
|
35 |
+
|
36 |
+
for key, default_value in session_state_defaults.items():
|
37 |
+
if key not in st.session_state:
|
38 |
+
st.session_state[key] = default_value
|
39 |
+
|
40 |
+
def setup_rag_pipeline(documents):
|
41 |
+
"""Set up the RAG pipeline with embeddings and retrieval."""
|
42 |
+
# Use HuggingFace embeddings
|
43 |
+
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
44 |
+
|
45 |
+
# Split documents
|
46 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=500)
|
47 |
+
splits = text_splitter.split_documents(documents)
|
48 |
+
|
49 |
+
# Create vector store and retriever
|
50 |
+
vectorstore = FAISS.from_documents(documents=splits, embedding=embeddings)
|
51 |
+
retriever = vectorstore.as_retriever()
|
52 |
+
|
53 |
+
# Configure LLM
|
54 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
55 |
+
llm = ChatGroq(groq_api_key=groq_api_key, model_name="llama-3.3-70b-versatile")
|
56 |
+
|
57 |
+
# Contextualization prompt
|
58 |
+
contextualize_q_prompt = ChatPromptTemplate.from_messages([
|
59 |
+
("system", "Given a chat history and the latest user question, "
|
60 |
+
"formulate a standalone question which can be understood "
|
61 |
+
"without the chat history. Do NOT answer the question, "
|
62 |
+
"just reformulate it if needed and otherwise return it as is."),
|
63 |
+
MessagesPlaceholder("chat_history"),
|
64 |
+
("human", "{input}")
|
65 |
+
])
|
66 |
+
|
67 |
+
# QA prompt
|
68 |
+
qa_prompt = ChatPromptTemplate.from_messages([
|
69 |
+
("system", "You are an assistant for question-answering tasks. "
|
70 |
+
"Use the following pieces of retrieved context to answer "
|
71 |
+
"the question. If you don't know the answer, say that you "
|
72 |
+
"don't know. Use three sentences minimum and keep the "
|
73 |
+
"answer concise. Can include any number of words\n\n{context}"),
|
74 |
+
MessagesPlaceholder("chat_history"),
|
75 |
+
("human", "{input}")
|
76 |
+
])
|
77 |
+
|
78 |
+
# Create chains
|
79 |
+
history_aware_retriever = create_history_aware_retriever(llm, retriever, contextualize_q_prompt)
|
80 |
+
question_answer_chain = create_stuff_documents_chain(llm, qa_prompt)
|
81 |
+
rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
|
82 |
+
|
83 |
+
# Conversational RAG chain with message history
|
84 |
+
conversational_rag_chain = RunnableWithMessageHistory(
|
85 |
+
rag_chain,
|
86 |
+
lambda session_id: ChatMessageHistory(),
|
87 |
+
input_messages_key="input",
|
88 |
+
history_messages_key="chat_history",
|
89 |
+
output_messages_key="answer"
|
90 |
+
)
|
91 |
+
|
92 |
+
return conversational_rag_chain, vectorstore, retriever
|
93 |
+
|
94 |
+
def main():
|
95 |
+
# Initialize Streamlit app
|
96 |
+
st.title("RAG with PDF Uploads")
|
97 |
+
st.write("Upload PDFs and chat with their content")
|
98 |
+
|
99 |
+
# Initialize session state
|
100 |
+
initialize_session_state()
|
101 |
+
|
102 |
+
# Reset session state when the reset button is clicked
|
103 |
+
# if st.button("Reset"):
|
104 |
+
# # Clear session state variables
|
105 |
+
# st.session_state.clear()
|
106 |
+
# # Reinitialize the session state
|
107 |
+
# initialize_session_state()
|
108 |
+
# st.success("Session reset successfully!")
|
109 |
+
|
110 |
+
if st.button("Reset"):
|
111 |
+
# Clear all session state variables
|
112 |
+
for key in list(st.session_state.keys()):
|
113 |
+
del st.session_state[key]
|
114 |
+
# Reinitialize the session state
|
115 |
+
initialize_session_state()
|
116 |
+
st.success("Session reset successfully!")
|
117 |
+
# Force a rerun of the app to clear the UI
|
118 |
+
st.rerun()
|
119 |
+
|
120 |
+
# API Key check
|
121 |
+
if not os.getenv("GROQ_API_KEY"):
|
122 |
+
st.error("Please set the GROQ_API_KEY environment variable.")
|
123 |
+
return
|
124 |
+
|
125 |
+
# File upload
|
126 |
+
uploaded_files = st.file_uploader("Upload PDF files", type='pdf', accept_multiple_files=True)
|
127 |
+
|
128 |
+
# Process uploaded files
|
129 |
+
if uploaded_files:
|
130 |
+
# Get current file names
|
131 |
+
current_file_names = {file.name for file in uploaded_files}
|
132 |
+
|
133 |
+
# Check if new files have been uploaded
|
134 |
+
if current_file_names != st.session_state.uploaded_file_names:
|
135 |
+
# Update the set of uploaded file names
|
136 |
+
st.session_state.uploaded_file_names = current_file_names
|
137 |
+
|
138 |
+
# Process PDF documents
|
139 |
+
documents = []
|
140 |
+
for uploaded_file in uploaded_files:
|
141 |
+
# Save the uploaded file temporarily
|
142 |
+
with open("./temp.pdf", "wb") as file:
|
143 |
+
file.write(uploaded_file.getvalue())
|
144 |
+
|
145 |
+
# Load the PDF
|
146 |
+
loader = PyPDFLoader("./temp.pdf")
|
147 |
+
docs = loader.load()
|
148 |
+
documents.extend(docs)
|
149 |
+
|
150 |
+
# Setup RAG pipeline
|
151 |
+
st.session_state.conversation_chain, st.session_state.vectorstore, st.session_state.retriever = setup_rag_pipeline(documents)
|
152 |
+
|
153 |
+
# Chat interface
|
154 |
+
user_input = st.text_input("Ask a question about your documents:")
|
155 |
+
|
156 |
+
if user_input and st.session_state.conversation_chain:
|
157 |
+
try:
|
158 |
+
# Invoke the conversational chain
|
159 |
+
response = st.session_state.conversation_chain.invoke(
|
160 |
+
{"input": user_input},
|
161 |
+
config={"configurable": {"session_id": "default_session"}}
|
162 |
+
)
|
163 |
+
|
164 |
+
# Display the answer
|
165 |
+
st.write("Assistant:", response['answer'])
|
166 |
+
|
167 |
+
# Update chat history
|
168 |
+
st.session_state.chat_history.append({"user": user_input, "assistant": response['answer']})
|
169 |
+
|
170 |
+
except Exception as e:
|
171 |
+
st.error(f"An error occurred: {e}")
|
172 |
+
|
173 |
+
# Display chat history
|
174 |
+
if st.session_state.chat_history:
|
175 |
+
st.subheader("Chat History")
|
176 |
+
for chat in st.session_state.chat_history:
|
177 |
+
st.markdown(f"**You:** {chat['user']}")
|
178 |
+
st.markdown(f"**Assistant:** {chat['assistant']}")
|
179 |
+
|
180 |
+
if __name__ == "__main__":
|
181 |
+
main()
|
182 |
+
|
183 |
+
|
184 |
+
|
185 |
+
|
186 |
+
# st.title("RAG With PDF uplaods and chat history")
|
187 |
+
# st.write("Upload Pdf's and chat with their content")
|
188 |
+
|
189 |
+
# llm = ChatGroq(groq_api_key = groq_api_key, model_name = "Gemma2-9b-It")
|
190 |
+
|
191 |
+
# session_id=st.text_input("Session ID",value="default_session")
|
192 |
+
# # statefully manages the session history
|
193 |
+
|
194 |
+
# if 'store' not in st.session_state:
|
195 |
+
# st.session_state.store={}
|
196 |
+
|
197 |
+
# uploaded_files = st.file_uploader("Upload the pdf file", type='pdf', accept_multiple_files=True)
|
198 |
+
|
199 |
+
# # process uploaded files
|
200 |
+
# if uploaded_files:
|
201 |
+
# documents = []
|
202 |
+
# for uploaded_file in uploaded_files:
|
203 |
+
# tempfile = f"./temp.pdf"
|
204 |
+
# with open(tempfile,"wb") as file:
|
205 |
+
# file.write(uploaded_file.getvalue())
|
206 |
+
# # file.name = uploaded_file.name
|
207 |
+
|
208 |
+
# loader= PyPDFLoader(tempfile) # i think this works only on saved files hence tempfile was created
|
209 |
+
# # recheck
|
210 |
+
# docs = loader.load()
|
211 |
+
# documents.extend(docs)
|
212 |
+
|
213 |
+
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=5000, chunk_overlap=500)
|
214 |
+
# splits = text_splitter.split_documents(documents)
|
215 |
+
# vectorstore = Chroma.from_documents(documents=splits, embedding=embeddings)
|
216 |
+
# retriever = vectorstore.as_retriever()
|
217 |
+
|
218 |
+
# contextualize_q_system_prompt=(
|
219 |
+
# "Given a chat history and the latest user question"
|
220 |
+
# "which might reference context in the chat history, "
|
221 |
+
# "formulate a standalone question which can be understood "
|
222 |
+
# "without the chat history. Do NOT answer the question, "
|
223 |
+
# "just reformulate it if needed and otherwise return it as is."
|
224 |
+
# )
|
225 |
+
|
226 |
+
# contextualize_q_prompt = ChatPromptTemplate.from_messages(
|
227 |
+
# [
|
228 |
+
# ("system", contextualize_q_system_prompt),
|
229 |
+
# MessagesPlaceholder("chat_history"),
|
230 |
+
# ("human","{input}")
|
231 |
+
|
232 |
+
# ]
|
233 |
+
# )
|
234 |
+
|
235 |
+
# history_aware_retriever=create_history_aware_retriever(llm,retriever,contextualize_q_prompt)
|
236 |
+
|
237 |
+
# ## Answer question
|
238 |
+
|
239 |
+
# # Answer question
|
240 |
+
# system_prompt = (
|
241 |
+
# "You are an assistant for question-answering tasks. "
|
242 |
+
# "Use the following pieces of retrieved context to answer "
|
243 |
+
# "the question. If you don't know the answer, say that you "
|
244 |
+
# "don't know. Use three sentences maximum and keep the "
|
245 |
+
# "answer concise."
|
246 |
+
# "\n\n"
|
247 |
+
# "{context}"
|
248 |
+
# )
|
249 |
+
# qa_prompt = ChatPromptTemplate.from_messages(
|
250 |
+
# [
|
251 |
+
# ("system", system_prompt),
|
252 |
+
# MessagesPlaceholder("chat_history"),
|
253 |
+
# ("human", "{input}"),
|
254 |
+
# ]
|
255 |
+
# )
|
256 |
+
# question_answer_chain=create_stuff_documents_chain(llm,qa_prompt)
|
257 |
+
# rag_chain=create_retrieval_chain(history_aware_retriever,question_answer_chain)
|
258 |
+
|
259 |
+
# def get_session_history(session:str)->BaseChatMessageHistory:
|
260 |
+
# if session_id not in st.session_state.store:
|
261 |
+
# st.session_state.store[session_id]=ChatMessageHistory()
|
262 |
+
# return st.session_state.store[session_id]
|
263 |
+
|
264 |
+
# conversational_rag_chain=RunnableWithMessageHistory(
|
265 |
+
# rag_chain,get_session_history,
|
266 |
+
# input_messages_key="input",
|
267 |
+
# history_messages_key="chat_history",
|
268 |
+
# output_messages_key="answer"
|
269 |
+
# )
|
270 |
+
|
271 |
+
# user_input = st.text_input("Question: ")
|
272 |
+
|
273 |
+
# if user_input:
|
274 |
+
# session_history=get_session_history(session_id)
|
275 |
+
# response = conversational_rag_chain.invoke(
|
276 |
+
# {"input": user_input},
|
277 |
+
# config={
|
278 |
+
# "configurable": {"session_id":session_id}
|
279 |
+
# }, # constructs a key "abc123" in `store`.
|
280 |
+
# )
|
281 |
+
# st.write(st.session_state.store)
|
282 |
+
# st.write("Assistant:", response['answer'])
|
283 |
+
# st.write("Chat History:", session_history.messages)
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
python-dotenv
|
3 |
+
ipykernel
|
4 |
+
langchain_community
|
5 |
+
pypdf
|
6 |
+
bs4
|
7 |
+
arxiv
|
8 |
+
pymupdf
|
9 |
+
wikipedia
|
10 |
+
langchain-text-splitters
|
11 |
+
sentence_transformers
|
12 |
+
langchain_huggingface
|
13 |
+
faiss-cpu
|
14 |
+
streamlit
|
15 |
+
langchain-groq
|
16 |
+
chromadb
|
17 |
+
langserve
|
18 |
+
langchain_chroma
|