File size: 4,524 Bytes
7a39e7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5bffe4
 
7a39e7e
7a9fb86
 
 
 
7a39e7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a9fb86
 
7a39e7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
#!/usr/bin/env python

from __future__ import annotations

import argparse
import functools
import os
import pickle
import sys

import gradio as gr
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download

sys.path.insert(0, 'stylegan3')

TITLE = 'Self-Distilled StyleGAN'
DESCRIPTION = '''This is an unofficial demo for models provided in https://github.com/self-distilled-stylegan/self-distilled-internet-photos.

Expected execution time on Hugging Face Spaces: 2s
'''
SAMPLE_IMAGE_DIR = 'https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/samples'
ARTICLE = f'''## Generated images
- truncation: 0.7
### Dogs
- size: 1024x1024
- seed: 0-99
![Dogs]({SAMPLE_IMAGE_DIR}/dogs.jpg)
### Elephants
- size: 512x512
- seed: 0-99
![Elephants]({SAMPLE_IMAGE_DIR}/elephants.jpg)
### Horses
- size: 256x256
- seed: 0-99
![Horses]({SAMPLE_IMAGE_DIR}/horses.jpg)
### Bicycles
- size: 256x256
- seed: 0-99
![Bicycles]({SAMPLE_IMAGE_DIR}/bicycles.jpg)
### Lions
- size: 512x512
- seed: 0-99
![Lions]({SAMPLE_IMAGE_DIR}/lions.jpg)
### Giraffes
- size: 512x512
- seed: 0-99
![Giraffes]({SAMPLE_IMAGE_DIR}/giraffes.jpg)
### Parrots
- size: 512x512
- seed: 0-99
![Parrots]({SAMPLE_IMAGE_DIR}/parrots.jpg)

<center><img src="https://visitor-badge.glitch.me/badge?page_id=hysts.self-distilled-stylegan" alt="visitor badge"/></center>
'''

TOKEN = os.environ['TOKEN']


def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--live', action='store_true')
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    parser.add_argument('--allow-flagging', type=str, default='never')
    return parser.parse_args()


def generate_z(z_dim: int, seed: int, device: torch.device) -> torch.Tensor:
    return torch.from_numpy(np.random.RandomState(seed).randn(
        1, z_dim)).to(device).float()


@torch.inference_mode()
def generate_image(model_name: str, seed: int, truncation_psi: float,
                   model_dict: dict[str, nn.Module],
                   device: torch.device) -> np.ndarray:
    model = model_dict[model_name]
    seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))

    z = generate_z(model.z_dim, seed, device)
    label = torch.zeros([1, model.c_dim], device=device)

    out = model(z, label, truncation_psi=truncation_psi)
    out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
    return out[0].cpu().numpy()


def load_model(model_name: str, device: torch.device) -> nn.Module:
    path = hf_hub_download('hysts/Self-Distilled-StyleGAN',
                           f'models/{model_name}_pytorch.pkl',
                           use_auth_token=TOKEN)
    with open(path, 'rb') as f:
        model = pickle.load(f)['G_ema']
    model.eval()
    model.to(device)
    with torch.inference_mode():
        z = torch.zeros((1, model.z_dim)).to(device)
        label = torch.zeros([1, model.c_dim], device=device)
        model(z, label)
    return model


def main():
    args = parse_args()
    device = torch.device(args.device)

    model_names = [
        'dogs_1024',
        'elephants_512',
        'horses_256',
        'bicycles_256',
        'lions_512',
        'giraffes_512',
        'parrots_512',
    ]

    model_dict = {name: load_model(name, device) for name in model_names}

    func = functools.partial(generate_image,
                             model_dict=model_dict,
                             device=device)
    func = functools.update_wrapper(func, generate_image)

    gr.Interface(
        func,
        [
            gr.inputs.Radio(
                model_names, type='value', default='dogs_1024', label='Model'),
            gr.inputs.Number(default=0, label='Seed'),
            gr.inputs.Slider(
                0, 2, step=0.05, default=0.7, label='Truncation psi'),
        ],
        gr.outputs.Image(type='numpy', label='Output'),
        title=TITLE,
        description=DESCRIPTION,
        article=ARTICLE,
        theme=args.theme,
        allow_flagging=args.allow_flagging,
        live=args.live,
    ).launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=args.share,
    )


if __name__ == '__main__':
    main()