File size: 5,156 Bytes
45bcca5 fed7f36 45bcca5 fed7f36 45bcca5 fed7f36 45bcca5 fed7f36 45bcca5 fed7f36 45bcca5 fed7f36 45bcca5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
#!/usr/bin/env python
from __future__ import annotations
import argparse
import gradio as gr
import numpy as np
from model import Model
TITLE = '# Self-Distilled StyleGAN'
DESCRIPTION = '''This is an unofficial demo for [https://github.com/self-distilled-stylegan/self-distilled-internet-photos](https://github.com/self-distilled-stylegan/self-distilled-internet-photos).
Expected execution time on Hugging Face Spaces: 2s'''
FOOTER = '<img id="visitor-badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.self-distilled-stylegan" alt="visitor badge" />'
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
return parser.parse_args()
def get_sample_image_url(model_name: str) -> str:
sample_image_dir = 'https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/samples'
return f'{sample_image_dir}/{model_name}.jpg'
def get_sample_image_markdown(model_name: str) -> str:
url = get_sample_image_url(model_name)
size = model_name.split('_')[-1]
return f'''
- size: {size}x{size}
- seed: 0-99
- truncation: 0.7
![sample images]({url})'''
def get_cluster_center_image_url(model_name: str) -> str:
cluster_center_image_dir = 'https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/cluster_center_images'
return f'{cluster_center_image_dir}/{model_name}.jpg'
def get_cluster_center_image_markdown(model_name: str) -> str:
url = get_cluster_center_image_url(model_name)
return f'![cluster center images]({url})'
def main():
args = parse_args()
model = Model(args.device)
with gr.Blocks(theme=args.theme, css='style.css') as demo:
gr.Markdown(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.TabItem('App'):
with gr.Row():
with gr.Column():
with gr.Group():
model_name = gr.Dropdown(
model.MODEL_NAMES,
value=model.MODEL_NAMES[0],
label='Model')
seed = gr.Slider(0,
np.iinfo(np.uint32).max,
value=0,
step=1,
label='Seed')
psi = gr.Slider(0,
2,
step=0.05,
value=0.7,
label='Truncation psi')
multimodal_truncation = gr.Checkbox(
label='Multi-modal Truncation', value=True)
run_button = gr.Button('Run')
with gr.Column():
result = gr.Image(label='Result', elem_id='result')
with gr.TabItem('Sample Images'):
with gr.Row():
model_name2 = gr.Dropdown(model.MODEL_NAMES,
value=model.MODEL_NAMES[0],
label='Model')
with gr.Row():
text = get_sample_image_markdown(model_name2.value)
sample_images = gr.Markdown(text)
with gr.TabItem('Cluster Center Images'):
with gr.Row():
model_name3 = gr.Dropdown(model.MODEL_NAMES,
value=model.MODEL_NAMES[0],
label='Model')
with gr.Row():
text = get_cluster_center_image_markdown(model_name3.value)
cluster_center_images = gr.Markdown(value=text)
gr.Markdown(FOOTER)
model_name.change(fn=model.set_model, inputs=model_name, outputs=None)
run_button.click(fn=model.set_model_and_generate_image,
inputs=[
model_name,
seed,
psi,
multimodal_truncation,
],
outputs=result)
model_name2.change(fn=get_sample_image_markdown,
inputs=model_name2,
outputs=sample_images)
model_name3.change(fn=get_cluster_center_image_markdown,
inputs=model_name3,
outputs=cluster_center_images)
demo.launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()
|