hysts's picture
hysts HF staff
Update
f2c9715
raw
history blame
7.32 kB
from __future__ import annotations
import pathlib
import pickle
import sys
import lpips
import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
current_dir = pathlib.Path(__file__).parent
submodule_dir = current_dir / "stylegan3"
sys.path.insert(0, submodule_dir.as_posix())
class LPIPS(lpips.LPIPS):
@staticmethod
def preprocess(image: np.ndarray) -> torch.Tensor:
data = torch.from_numpy(image).float() / 255
data = data * 2 - 1
return data.permute(2, 0, 1).unsqueeze(0)
@torch.inference_mode()
def compute_features(self, data: torch.Tensor) -> list[torch.Tensor]:
data = self.scaling_layer(data)
data = self.net(data)
return [lpips.normalize_tensor(x) for x in data]
@torch.inference_mode()
def compute_distance(self, features0: list[torch.Tensor], features1: list[torch.Tensor]) -> float:
res = 0
for lin, x0, x1 in zip(self.lins, features0, features1):
d = (x0 - x1) ** 2
y = lin(d)
y = lpips.lpips.spatial_average(y)
res += y.item()
return res
class Model:
MODEL_NAMES = [
"dogs_1024",
"elephants_512",
"horses_256",
"bicycles_256",
"lions_512",
"giraffes_512",
"parrots_512",
]
TRUNCATION_TYPES = [
"Multimodal (LPIPS)",
"Multimodal (L2)",
"Global",
]
def __init__(self):
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self._download_all_models()
self._download_all_cluster_centers()
self._download_all_cluster_center_images()
self.model_name = self.MODEL_NAMES[0]
self.model = self._load_model(self.model_name)
self.cluster_centers = self._load_cluster_centers(self.model_name)
self.cluster_center_images = self._load_cluster_center_images(self.model_name)
self.lpips = LPIPS()
self.cluster_center_lpips_feature_dict = self._compute_cluster_center_lpips_features()
def _load_model(self, model_name: str) -> nn.Module:
path = hf_hub_download("public-data/Self-Distilled-StyleGAN", f"models/{model_name}_pytorch.pkl")
with open(path, "rb") as f:
model = pickle.load(f)["G_ema"]
model.eval()
model.to(self.device)
return model
def _load_cluster_centers(self, model_name: str) -> torch.Tensor:
path = hf_hub_download("public-data/Self-Distilled-StyleGAN", f"cluster_centers/{model_name}.npy")
centers = np.load(path)
centers = torch.from_numpy(centers).float().to(self.device)
return centers
def _load_cluster_center_images(self, model_name: str) -> np.ndarray:
path = hf_hub_download("public-data/Self-Distilled-StyleGAN", f"cluster_center_images/{model_name}.npy")
return np.load(path)
def set_model(self, model_name: str) -> None:
if model_name == self.model_name:
return
self.model_name = model_name
self.model = self._load_model(model_name)
self.cluster_centers = self._load_cluster_centers(model_name)
self.cluster_center_images = self._load_cluster_center_images(model_name)
def _download_all_models(self):
for name in self.MODEL_NAMES:
self._load_model(name)
def _download_all_cluster_centers(self):
for name in self.MODEL_NAMES:
self._load_cluster_centers(name)
def _download_all_cluster_center_images(self):
for name in self.MODEL_NAMES:
self._load_cluster_center_images(name)
def generate_z(self, seed: int) -> torch.Tensor:
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
return torch.from_numpy(np.random.RandomState(seed).randn(1, self.model.z_dim)).float().to(self.device)
def compute_w(self, z: torch.Tensor) -> torch.Tensor:
label = torch.zeros((1, self.model.c_dim), device=self.device)
w = self.model.mapping(z, label)
return w
@staticmethod
def truncate_w(w_center: torch.Tensor, w: torch.Tensor, psi: float) -> torch.Tensor:
if psi == 1:
return w
return w_center.lerp(w, psi)
@torch.inference_mode()
def synthesize(self, w: torch.Tensor) -> torch.Tensor:
return self.model.synthesis(w)
def postprocess(self, tensor: torch.Tensor) -> np.ndarray:
tensor = (tensor.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
return tensor.cpu().numpy()
def compute_lpips_features(self, image: np.ndarray) -> list[torch.Tensor]:
data = self.lpips.preprocess(image)
return self.lpips.compute_features(data)
def _compute_cluster_center_lpips_features(self) -> dict[str, list[list[torch.Tensor]]]:
res = dict()
for name in self.MODEL_NAMES:
images = self._load_cluster_center_images(name)
res[name] = [self.compute_lpips_features(image) for image in images]
return res
def compute_distance_to_cluster_centers(self, ws: torch.Tensor, distance_type: str) -> list[torch.Tensor]:
if distance_type == "l2":
return self._compute_l2_distance_to_cluster_centers(ws)
elif distance_type == "lpips":
return self._compute_lpips_distance_to_cluster_centers(ws)
else:
raise ValueError
def _compute_l2_distance_to_cluster_centers(self, ws: torch.Tensor) -> np.ndarray:
dist2 = ((self.cluster_centers - ws[0, 0]) ** 2).sum(dim=1)
return dist2.cpu().numpy()
def _compute_lpips_distance_to_cluster_centers(self, ws: torch.Tensor) -> np.ndarray:
x = self.synthesize(ws)
x = self.postprocess(x)[0]
feat0 = self.compute_lpips_features(x)
cluster_center_features = self.cluster_center_lpips_feature_dict[self.model_name]
distances = [self.lpips.compute_distance(feat0, feat1) for feat1 in cluster_center_features]
return np.asarray(distances)
def find_nearest_cluster_center(self, ws: torch.Tensor, distance_type: str) -> int:
distances = self.compute_distance_to_cluster_centers(ws, distance_type)
return int(np.argmin(distances))
def generate_image(self, seed: int, truncation_psi: float, truncation_type: str) -> np.ndarray:
z = self.generate_z(seed)
ws = self.compute_w(z)
if truncation_type == self.TRUNCATION_TYPES[2]:
w0 = self.model.mapping.w_avg
else:
if truncation_type == self.TRUNCATION_TYPES[0]:
distance_type = "lpips"
elif truncation_type == self.TRUNCATION_TYPES[1]:
distance_type = "l2"
else:
raise ValueError
cluster_index = self.find_nearest_cluster_center(ws, distance_type)
w0 = self.cluster_centers[cluster_index]
new_ws = self.truncate_w(w0, ws, truncation_psi)
out = self.synthesize(new_ws)
out = self.postprocess(out)
return out[0]
def set_model_and_generate_image(
self, model_name: str, seed: int, truncation_psi: float, truncation_type: str
) -> np.ndarray:
self.set_model(model_name)
return self.generate_image(seed, truncation_psi, truncation_type)