|
|
|
|
|
from __future__ import annotations |
|
|
|
import pathlib |
|
|
|
import gradio as gr |
|
import numpy as np |
|
|
|
from model import Model |
|
|
|
DESCRIPTION = '# [Self-Distilled StyleGAN](https://github.com/self-distilled-stylegan/self-distilled-internet-photos)' |
|
|
|
|
|
def get_sample_image_url(name: str) -> str: |
|
sample_image_dir = 'https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/samples' |
|
return f'{sample_image_dir}/{name}.jpg' |
|
|
|
|
|
def get_sample_image_markdown(name: str) -> str: |
|
url = get_sample_image_url(name) |
|
size = name.split('_')[1] |
|
truncation_type = '_'.join(name.split('_')[2:]) |
|
return f''' |
|
- size: {size}x{size} |
|
- seed: 0-99 |
|
- truncation: 0.7 |
|
- truncation type: {truncation_type} |
|
![sample images]({url})''' |
|
|
|
|
|
def get_cluster_center_image_url(model_name: str) -> str: |
|
cluster_center_image_dir = 'https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/cluster_center_images' |
|
return f'{cluster_center_image_dir}/{model_name}.jpg' |
|
|
|
|
|
def get_cluster_center_image_markdown(model_name: str) -> str: |
|
url = get_cluster_center_image_url(model_name) |
|
return f'![cluster center images]({url})' |
|
|
|
|
|
model = Model() |
|
|
|
with gr.Blocks(css='style.css') as demo: |
|
gr.Markdown(DESCRIPTION) |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem('App'): |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Group(): |
|
model_name = gr.Dropdown(label='Model', |
|
choices=model.MODEL_NAMES, |
|
value=model.MODEL_NAMES[0]) |
|
seed = gr.Slider(label='Seed', |
|
minimum=0, |
|
maximum=np.iinfo(np.uint32).max, |
|
step=1, |
|
value=0) |
|
psi = gr.Slider(label='Truncation psi', |
|
minimum=0, |
|
maximum=2, |
|
step=0.05, |
|
value=0.7) |
|
truncation_type = gr.Dropdown( |
|
label='Truncation Type', |
|
choices=model.TRUNCATION_TYPES, |
|
value=model.TRUNCATION_TYPES[0]) |
|
run_button = gr.Button('Run') |
|
with gr.Column(): |
|
result = gr.Image(label='Result', elem_id='result') |
|
|
|
with gr.TabItem('Sample Images'): |
|
with gr.Row(): |
|
paths = sorted(pathlib.Path('samples').glob('*')) |
|
names = [path.stem for path in paths] |
|
model_name2 = gr.Dropdown(label='Type', |
|
choices=names, |
|
value='dogs_1024_multimodal_lpips') |
|
with gr.Row(): |
|
text = get_sample_image_markdown(model_name2.value) |
|
sample_images = gr.Markdown(text) |
|
|
|
with gr.TabItem('Cluster Center Images'): |
|
with gr.Row(): |
|
model_name3 = gr.Dropdown(label='Model', |
|
choices=model.MODEL_NAMES, |
|
value=model.MODEL_NAMES[0]) |
|
with gr.Row(): |
|
text = get_cluster_center_image_markdown(model_name3.value) |
|
cluster_center_images = gr.Markdown(value=text) |
|
|
|
model_name.change(fn=model.set_model, inputs=model_name) |
|
run_button.click(fn=model.set_model_and_generate_image, |
|
inputs=[ |
|
model_name, |
|
seed, |
|
psi, |
|
truncation_type, |
|
], |
|
outputs=result) |
|
model_name2.change(fn=get_sample_image_markdown, |
|
inputs=model_name2, |
|
outputs=sample_images) |
|
model_name3.change(fn=get_cluster_center_image_markdown, |
|
inputs=model_name3, |
|
outputs=cluster_center_images) |
|
|
|
demo.queue(max_size=10).launch() |
|
|