|
from __future__ import annotations |
|
|
|
import pathlib |
|
import pickle |
|
import sys |
|
|
|
import lpips |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from huggingface_hub import hf_hub_download |
|
|
|
current_dir = pathlib.Path(__file__).parent |
|
submodule_dir = current_dir / "stylegan3" |
|
sys.path.insert(0, submodule_dir.as_posix()) |
|
|
|
|
|
class LPIPS(lpips.LPIPS): |
|
@staticmethod |
|
def preprocess(image: np.ndarray) -> torch.Tensor: |
|
data = torch.from_numpy(image).float() / 255 |
|
data = data * 2 - 1 |
|
return data.permute(2, 0, 1).unsqueeze(0) |
|
|
|
@torch.inference_mode() |
|
def compute_features(self, data: torch.Tensor) -> list[torch.Tensor]: |
|
data = self.scaling_layer(data) |
|
data = self.net(data) |
|
return [lpips.normalize_tensor(x) for x in data] |
|
|
|
@torch.inference_mode() |
|
def compute_distance(self, features0: list[torch.Tensor], features1: list[torch.Tensor]) -> float: |
|
res = 0 |
|
for lin, x0, x1 in zip(self.lins, features0, features1): |
|
d = (x0 - x1) ** 2 |
|
y = lin(d) |
|
y = lpips.lpips.spatial_average(y) |
|
res += y.item() |
|
return res |
|
|
|
|
|
class Model: |
|
|
|
MODEL_NAMES = [ |
|
"dogs_1024", |
|
"elephants_512", |
|
"horses_256", |
|
"bicycles_256", |
|
"lions_512", |
|
"giraffes_512", |
|
"parrots_512", |
|
] |
|
TRUNCATION_TYPES = [ |
|
"Multimodal (LPIPS)", |
|
"Multimodal (L2)", |
|
"Global", |
|
] |
|
|
|
def __init__(self): |
|
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
self._download_all_models() |
|
self._download_all_cluster_centers() |
|
self._download_all_cluster_center_images() |
|
|
|
self.model_name = self.MODEL_NAMES[0] |
|
self.model = self._load_model(self.model_name) |
|
self.cluster_centers = self._load_cluster_centers(self.model_name) |
|
self.cluster_center_images = self._load_cluster_center_images(self.model_name) |
|
|
|
self.lpips = LPIPS() |
|
self.cluster_center_lpips_feature_dict = self._compute_cluster_center_lpips_features() |
|
|
|
def _load_model(self, model_name: str) -> nn.Module: |
|
path = hf_hub_download("public-data/Self-Distilled-StyleGAN", f"models/{model_name}_pytorch.pkl") |
|
with open(path, "rb") as f: |
|
model = pickle.load(f)["G_ema"] |
|
model.eval() |
|
model.to(self.device) |
|
return model |
|
|
|
def _load_cluster_centers(self, model_name: str) -> torch.Tensor: |
|
path = hf_hub_download("public-data/Self-Distilled-StyleGAN", f"cluster_centers/{model_name}.npy") |
|
centers = np.load(path) |
|
centers = torch.from_numpy(centers).float().to(self.device) |
|
return centers |
|
|
|
def _load_cluster_center_images(self, model_name: str) -> np.ndarray: |
|
path = hf_hub_download("public-data/Self-Distilled-StyleGAN", f"cluster_center_images/{model_name}.npy") |
|
return np.load(path) |
|
|
|
def set_model(self, model_name: str) -> None: |
|
if model_name == self.model_name: |
|
return |
|
self.model_name = model_name |
|
self.model = self._load_model(model_name) |
|
self.cluster_centers = self._load_cluster_centers(model_name) |
|
self.cluster_center_images = self._load_cluster_center_images(model_name) |
|
|
|
def _download_all_models(self): |
|
for name in self.MODEL_NAMES: |
|
self._load_model(name) |
|
|
|
def _download_all_cluster_centers(self): |
|
for name in self.MODEL_NAMES: |
|
self._load_cluster_centers(name) |
|
|
|
def _download_all_cluster_center_images(self): |
|
for name in self.MODEL_NAMES: |
|
self._load_cluster_center_images(name) |
|
|
|
def generate_z(self, seed: int) -> torch.Tensor: |
|
seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) |
|
return torch.from_numpy(np.random.RandomState(seed).randn(1, self.model.z_dim)).float().to(self.device) |
|
|
|
def compute_w(self, z: torch.Tensor) -> torch.Tensor: |
|
label = torch.zeros((1, self.model.c_dim), device=self.device) |
|
w = self.model.mapping(z, label) |
|
return w |
|
|
|
@staticmethod |
|
def truncate_w(w_center: torch.Tensor, w: torch.Tensor, psi: float) -> torch.Tensor: |
|
if psi == 1: |
|
return w |
|
return w_center.lerp(w, psi) |
|
|
|
@torch.inference_mode() |
|
def synthesize(self, w: torch.Tensor) -> torch.Tensor: |
|
return self.model.synthesis(w) |
|
|
|
def postprocess(self, tensor: torch.Tensor) -> np.ndarray: |
|
tensor = (tensor.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) |
|
return tensor.cpu().numpy() |
|
|
|
def compute_lpips_features(self, image: np.ndarray) -> list[torch.Tensor]: |
|
data = self.lpips.preprocess(image) |
|
return self.lpips.compute_features(data) |
|
|
|
def _compute_cluster_center_lpips_features(self) -> dict[str, list[list[torch.Tensor]]]: |
|
res = dict() |
|
for name in self.MODEL_NAMES: |
|
images = self._load_cluster_center_images(name) |
|
res[name] = [self.compute_lpips_features(image) for image in images] |
|
return res |
|
|
|
def compute_distance_to_cluster_centers(self, ws: torch.Tensor, distance_type: str) -> list[torch.Tensor]: |
|
if distance_type == "l2": |
|
return self._compute_l2_distance_to_cluster_centers(ws) |
|
elif distance_type == "lpips": |
|
return self._compute_lpips_distance_to_cluster_centers(ws) |
|
else: |
|
raise ValueError |
|
|
|
def _compute_l2_distance_to_cluster_centers(self, ws: torch.Tensor) -> np.ndarray: |
|
dist2 = ((self.cluster_centers - ws[0, 0]) ** 2).sum(dim=1) |
|
return dist2.cpu().numpy() |
|
|
|
def _compute_lpips_distance_to_cluster_centers(self, ws: torch.Tensor) -> np.ndarray: |
|
x = self.synthesize(ws) |
|
x = self.postprocess(x)[0] |
|
feat0 = self.compute_lpips_features(x) |
|
cluster_center_features = self.cluster_center_lpips_feature_dict[self.model_name] |
|
distances = [self.lpips.compute_distance(feat0, feat1) for feat1 in cluster_center_features] |
|
return np.asarray(distances) |
|
|
|
def find_nearest_cluster_center(self, ws: torch.Tensor, distance_type: str) -> int: |
|
distances = self.compute_distance_to_cluster_centers(ws, distance_type) |
|
return int(np.argmin(distances)) |
|
|
|
def generate_image(self, seed: int, truncation_psi: float, truncation_type: str) -> np.ndarray: |
|
z = self.generate_z(seed) |
|
ws = self.compute_w(z) |
|
if truncation_type == self.TRUNCATION_TYPES[2]: |
|
w0 = self.model.mapping.w_avg |
|
else: |
|
if truncation_type == self.TRUNCATION_TYPES[0]: |
|
distance_type = "lpips" |
|
elif truncation_type == self.TRUNCATION_TYPES[1]: |
|
distance_type = "l2" |
|
else: |
|
raise ValueError |
|
cluster_index = self.find_nearest_cluster_center(ws, distance_type) |
|
w0 = self.cluster_centers[cluster_index] |
|
new_ws = self.truncate_w(w0, ws, truncation_psi) |
|
out = self.synthesize(new_ws) |
|
out = self.postprocess(out) |
|
return out[0] |
|
|
|
def set_model_and_generate_image( |
|
self, model_name: str, seed: int, truncation_psi: float, truncation_type: str |
|
) -> np.ndarray: |
|
self.set_model(model_name) |
|
return self.generate_image(seed, truncation_psi, truncation_type) |
|
|