Spaces:
Running
Running
File size: 5,858 Bytes
6815db7 06a4d16 6815db7 06a4d16 99a0547 3c407d6 6815db7 06a4d16 3c407d6 06a4d16 3c407d6 06a4d16 3c407d6 06a4d16 3c407d6 06a4d16 3c407d6 06a4d16 3c407d6 06a4d16 3c407d6 06a4d16 3c407d6 06a4d16 3c407d6 06a4d16 3c407d6 06a4d16 3c407d6 06a4d16 3c407d6 06a4d16 3c407d6 06a4d16 3c407d6 06a4d16 3c407d6 06a4d16 3c407d6 6815db7 910c8b5 3c407d6 910c8b5 3c407d6 910c8b5 3c407d6 910c8b5 3c407d6 910c8b5 3c407d6 910c8b5 3c407d6 910c8b5 3c407d6 910c8b5 3c407d6 910c8b5 3c407d6 910c8b5 3c407d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
#!/usr/bin/env python
from __future__ import annotations
import json
import gradio as gr
import numpy as np
from model import Model
DESCRIPTION = "# [StyleGAN-XL](https://github.com/autonomousvision/stylegan_xl)"
def update_class_index(name: str) -> dict:
if "imagenet" in name:
return gr.Slider(maximum=999, visible=True)
elif "cifar" in name:
return gr.Slider(maximum=9, visible=True)
else:
return gr.Slider(visible=False)
def get_sample_image_url(name: str) -> str:
sample_image_dir = "https://huggingface.co/spaces/hysts/StyleGAN-XL/resolve/main/samples"
return f"{sample_image_dir}/{name}.jpg"
def get_sample_image_markdown(name: str) -> str:
url = get_sample_image_url(name)
if name == "imagenet":
size = 128
class_index = "0-999"
seed = "0"
elif name == "cifar10":
size = 32
class_index = "0-9"
seed = "0-9"
elif name == "ffhq":
size = 256
class_index = "N/A"
seed = "0-99"
elif name == "pokemon":
size = 256
class_index = "N/A"
seed = "0-99"
else:
raise ValueError
return f"""
- size: {size}x{size}
- class_index: {class_index}
- seed: {seed}
- truncation: 0.7
![sample images]({url})"""
def load_class_names(name: str) -> list[str]:
with open(f"labels/{name}_classes.json") as f:
names = json.load(f)
return names
def get_class_name_df(name: str) -> list:
names = load_class_names(name)
return list(map(list, enumerate(names))) # type: ignore
IMAGENET_NAMES = load_class_names("imagenet")
CIFAR10_NAMES = load_class_names("cifar10")
def update_class_name(model_name: str, index: int) -> dict:
if "imagenet" in model_name:
if index < len(IMAGENET_NAMES):
value = IMAGENET_NAMES[index]
else:
value = "-"
return gr.Textbox(value=value, visible=True)
elif "cifar" in model_name:
if index < len(CIFAR10_NAMES):
value = CIFAR10_NAMES[index]
else:
value = "-"
return gr.Textbox(value=value, visible=True)
else:
return gr.Textbox(visible=False)
model = Model()
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Tabs():
with gr.TabItem("App"):
with gr.Row():
with gr.Column():
with gr.Group():
model_name = gr.Dropdown(label="Model", choices=model.MODEL_NAMES, value=model.MODEL_NAMES[3])
seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.uint32).max, step=1, value=0)
psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7)
class_index = gr.Slider(label="Class Index", minimum=0, maximum=999, step=1, value=83)
class_name = gr.Textbox(
label="Class Label", value=IMAGENET_NAMES[class_index.value], interactive=False
)
tx = gr.Slider(label="Translate X", minimum=-1, maximum=1, step=0.05, value=0)
ty = gr.Slider(label="Translate Y", minimum=-1, maximum=1, step=0.05, value=0)
angle = gr.Slider(label="Angle", minimum=-180, maximum=180, step=5, value=0)
run_button = gr.Button()
with gr.Column():
result = gr.Image(label="Result")
with gr.TabItem("Sample Images"):
with gr.Row():
model_name2 = gr.Dropdown(
label="Model",
choices=[
"imagenet",
"cifar10",
"ffhq",
"pokemon",
],
value="imagenet",
)
with gr.Row():
text = get_sample_image_markdown(model_name2.value)
sample_images = gr.Markdown(text)
with gr.TabItem("Class Names"):
with gr.Row():
dataset_name = gr.Dropdown(
label="Dataset",
choices=[
"imagenet",
"cifar10",
],
value="imagenet",
)
with gr.Row():
df = get_class_name_df("imagenet")
class_names = gr.Dataframe(value=df, col_count=2, headers=["Class Index", "Label"], interactive=False)
model_name.change(
fn=update_class_index,
inputs=model_name,
outputs=class_index,
queue=False,
api_name=False,
)
model_name.change(
fn=update_class_name,
inputs=[
model_name,
class_index,
],
outputs=class_name,
queue=False,
api_name=False,
)
class_index.change(
fn=update_class_name,
inputs=[
model_name,
class_index,
],
outputs=class_name,
queue=False,
api_name=False,
)
run_button.click(
fn=model.set_model_and_generate_image,
inputs=[
model_name,
seed,
psi,
class_index,
tx,
ty,
angle,
],
outputs=result,
api_name="run",
)
model_name2.change(
fn=get_sample_image_markdown,
inputs=model_name2,
outputs=sample_images,
queue=False,
api_name=False,
)
dataset_name.change(
fn=get_class_name_df,
inputs=dataset_name,
outputs=class_names,
queue=False,
api_name=False,
)
if __name__ == "__main__":
demo.queue(max_size=10).launch()
|