File size: 3,705 Bytes
06a4d16
 
 
 
 
 
 
 
 
 
 
 
3c407d6
06a4d16
 
 
 
 
 
3c407d6
 
 
 
 
 
 
06a4d16
 
910c8b5
3c407d6
06a4d16
 
 
 
 
3c407d6
 
 
06a4d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c407d6
06a4d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c407d6
06a4d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c407d6
06a4d16
 
3c407d6
 
 
06a4d16
 
 
 
 
 
 
 
 
3c407d6
 
 
06a4d16
3c407d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from __future__ import annotations

import pathlib
import pickle
import sys

import numpy as np
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download

current_dir = pathlib.Path(__file__).parent
submodule_dir = current_dir / "stylegan_xl"
sys.path.insert(0, submodule_dir.as_posix())


class Model:

    MODEL_NAMES = [
        "imagenet16",
        "imagenet32",
        "imagenet64",
        "imagenet128",
        "cifar10",
        "ffhq256",
        "pokemon256",
    ]

    def __init__(self):
        self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        self._download_all_models()
        self.model_name = self.MODEL_NAMES[3]
        self.model = self._load_model(self.model_name)

    def _load_model(self, model_name: str) -> nn.Module:
        path = hf_hub_download("public-data/StyleGAN-XL", f"models/{model_name}.pkl")
        with open(path, "rb") as f:
            model = pickle.load(f)["G_ema"]
        model.eval()
        model.to(self.device)
        return model

    def set_model(self, model_name: str) -> None:
        if model_name == self.model_name:
            return
        self.model_name = model_name
        self.model = self._load_model(model_name)

    def _download_all_models(self):
        for name in self.MODEL_NAMES:
            self._load_model(name)

    @staticmethod
    def make_transform(translate: tuple[float, float], angle: float) -> np.ndarray:
        mat = np.eye(3)
        sin = np.sin(angle / 360 * np.pi * 2)
        cos = np.cos(angle / 360 * np.pi * 2)
        mat[0][0] = cos
        mat[0][1] = sin
        mat[0][2] = translate[0]
        mat[1][0] = -sin
        mat[1][1] = cos
        mat[1][2] = translate[1]
        return mat

    def generate_z(self, seed: int) -> torch.Tensor:
        seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
        z = np.random.RandomState(seed).randn(1, self.model.z_dim)
        return torch.from_numpy(z).float().to(self.device)

    def postprocess(self, tensor: torch.Tensor) -> np.ndarray:
        tensor = (tensor.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
        return tensor.cpu().numpy()

    def make_label_tensor(self, class_index: int) -> torch.Tensor:
        class_index = round(class_index)
        class_index = min(max(0, class_index), self.model.c_dim - 1)
        class_index = torch.tensor(class_index, dtype=torch.long)

        label = torch.zeros([1, self.model.c_dim], device=self.device)
        if class_index >= 0:
            label[:, class_index] = 1
        return label

    def set_transform(self, tx: float, ty: float, angle: float) -> None:
        mat = self.make_transform((tx, ty), angle)
        mat = np.linalg.inv(mat)
        self.model.synthesis.input.transform.copy_(torch.from_numpy(mat))

    @torch.inference_mode()
    def generate(self, z: torch.Tensor, label: torch.Tensor, truncation_psi: float) -> torch.Tensor:
        return self.model(z, label, truncation_psi=truncation_psi)

    def generate_image(
        self, seed: int, truncation_psi: float, class_index: int, tx: float, ty: float, angle: float
    ) -> np.ndarray:
        self.set_transform(tx, ty, angle)

        z = self.generate_z(seed)
        label = self.make_label_tensor(class_index)

        out = self.generate(z, label, truncation_psi)
        out = self.postprocess(out)
        return out[0]

    def set_model_and_generate_image(
        self, model_name: str, seed: int, truncation_psi: float, class_index: int, tx: float, ty: float, angle: float
    ) -> np.ndarray:
        self.set_model(model_name)
        return self.generate_image(seed, truncation_psi, class_index, tx, ty, angle)