File size: 6,663 Bytes
95b1a30 f043377 95b1a30 2153359 95b1a30 769e874 2153359 95b1a30 ec949f6 55190ff ec949f6 55190ff ec949f6 f043377 7db26c5 f043377 55190ff 83e23a7 95b1a30 dd0accd 95b1a30 ab40352 b95a615 95b1a30 f043377 95b1a30 ab40352 2153359 3656318 e46317c 2153359 ab40352 2153359 dd0accd 2153359 838042f e46317c ab40352 95b1a30 3656318 95b1a30 769e874 3656318 95b1a30 f043377 95b1a30 838042f 95b1a30 838042f 130150b 95b1a30 f043377 95b1a30 dd0accd 95b1a30 c0b6caa 838042f ab40352 838042f 95b1a30 dd0accd 95b1a30 ab40352 95b1a30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
from typing import Tuple
import requests
import random
import numpy as np
import gradio as gr
import spaces
import torch
from PIL import Image
from diffusers import FluxInpaintPipeline
from diffusers import FluxImg2ImgPipeline
MAX_SEED = np.iinfo(np.int32).max
IMAGE_SIZE = 1024
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def remove_background(image: Image.Image, threshold: int = 50) -> Image.Image:
image = image.convert("RGBA")
data = image.getdata()
new_data = []
for item in data:
avg = sum(item[:3]) / 3
if avg < threshold:
new_data.append((0, 0, 0, 0))
else:
new_data.append(item)
image.putdata(new_data)
return image
#pipe = FluxInpaintPipeline.from_pretrained(
# "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
pipe2 = FluxImg2ImgPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
def resize_image_dimensions(
original_resolution_wh: Tuple[int, int],
maximum_dimension: int = IMAGE_SIZE
) -> Tuple[int, int]:
width, height = original_resolution_wh
# if width <= maximum_dimension and height <= maximum_dimension:
# width = width - (width % 32)
# height = height - (height % 32)
# return width, height
# if width > height:
# scaling_factor = maximum_dimension / width
# else:
# scaling_factor = maximum_dimension / height
# new_width = int(width * scaling_factor)
# new_height = int(height * scaling_factor)
# new_width = new_width - (new_width % 32)
# new_height = new_height - (new_height % 32)
return 1024, 1024
@spaces.GPU(duration=80)
def process(
input_image_editor: dict,
input_text: str,
seed_slicer: int,
randomize_seed_checkbox: bool,
strength_slider: float,
num_inference_steps_slider: int,
num_influence: float,
progress=gr.Progress(track_tqdm=True)
):
if not input_text:
gr.Info("Please enter a text prompt.")
return None, None
input_text = "A military COR3 "+input_text
image = input_image_editor['background']
mask = input_image_editor['layers'][0]
if not image:
gr.Info("Please upload an image.")
return None, None
width, height = resize_image_dimensions(original_resolution_wh=image.size)
resized_image = image.resize((width, height), Image.LANCZOS)
if randomize_seed_checkbox:
seed_slicer = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed_slicer)
# if not mask:
# gr.Info("Please draw a mask on the image.")
pipe2.load_lora_weights("SIGMitch/KIT")
result = pipe2(
prompt=input_text,
image=resized_image,
width=width,
height=height,
num_images_per_prompt =2,
strength=strength_slider,
generator=generator,
joint_attention_kwargs={"scale": num_influence},
num_inference_steps=num_inference_steps_slider
)
print('INFERENCE DONE')
return result.images[0], result.images[1]
#resized_mask = mask.resize((width, height), Image.LANCZOS)
#pipe.load_lora_weights("SIGMitch/KIT")
#result = pipe(
# prompt=input_text,
# image=resized_image,
# mask_image=resized_mask,
# width=width,
# height=height,
# strength=strength_slider,
# generator=generator,
# joint_attention_kwargs={"scale": 1.2},
# num_inference_steps=num_inference_steps_slider
#).images[0]
#print('INFERENCE DONE')
# return result, resized_mask
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
input_image_editor_component = gr.ImageEditor(
label='Image',
type='pil',
sources=["upload"],
image_mode='RGB',
layers=False
)
with gr.Row():
input_text_component = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
lorasteps = gr.Slider(label="Influence", minimum=0, maximum=2, step=0.1, value=1)
submit_button_component = gr.Button(
value='Submit', variant='primary', scale=0)
with gr.Accordion("Advanced Settings", open=False):
seed_slicer_component = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed_checkbox_component = gr.Checkbox(
label="Randomize seed", value=True)
with gr.Row():
strength_slider_component = gr.Slider(
label="Strength",
info="Indicates extent to transform the reference `image`. "
"Must be between 0 and 1. `image` is used as a starting "
"point and more noise is added the higher the `strength`.",
minimum=0,
maximum=1,
step=0.01,
value=0.85,
)
num_inference_steps_slider_component = gr.Slider(
label="Number of inference steps",
info="The number of denoising steps. More denoising steps "
"usually lead to a higher quality image at the",
minimum=1,
maximum=50,
step=1,
value=20,
)
with gr.Column():
output_image_component = gr.Image(
type='pil', image_mode='RGB', label='Generated image', format="png")
output_image_component2 = gr.Image(
type='pil', image_mode='RGB', label='Generated image', format="png")
submit_button_component.click(
fn=process,
inputs=[
input_image_editor_component,
input_text_component,
seed_slicer_component,
randomize_seed_checkbox_component,
strength_slider_component,
num_inference_steps_slider_component,
lorasteps
],
outputs=[
output_image_component,
output_image_component2
]
)
demo.launch(debug=False, show_error=True) |