Update app.py
Browse files
app.py
CHANGED
@@ -5,11 +5,15 @@ import torch
|
|
5 |
from diffusers import FluxPipeline
|
6 |
|
7 |
pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16).to("cuda")
|
8 |
-
pipeline.load_lora_weights("pepper13/fluxfw")
|
9 |
#pipeline.enable_model_cpu_offload()
|
10 |
|
11 |
@spaces.GPU(duration=70)
|
12 |
-
def generate(prompt, negative_prompt, width, height, sample_steps):
|
|
|
|
|
|
|
|
|
|
|
13 |
return pipeline(prompt=f"{prompt}\nDO NOT INCLUDE {negative_prompt}", width=width, height=height, num_inference_steps=sample_steps, generator=torch.Generator("cpu").manual_seed(42), guidance_scale=7).images[0]
|
14 |
|
15 |
with gr.Blocks() as interface:
|
@@ -29,8 +33,9 @@ with gr.Blocks() as interface:
|
|
29 |
height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=512, minimum=128, maximum=4096, step=64, interactive=True)
|
30 |
with gr.Column():
|
31 |
sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True)
|
|
|
32 |
|
33 |
-
generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps], outputs=[output])
|
34 |
|
35 |
if __name__ == "__main__":
|
36 |
interface.launch()
|
|
|
5 |
from diffusers import FluxPipeline
|
6 |
|
7 |
pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16).to("cuda")
|
|
|
8 |
#pipeline.enable_model_cpu_offload()
|
9 |
|
10 |
@spaces.GPU(duration=70)
|
11 |
+
def generate(prompt, negative_prompt, width, height, sample_steps, lora_id):
|
12 |
+
try:
|
13 |
+
pipeline.load_lora_weights(lora_id)
|
14 |
+
except Exception as e:
|
15 |
+
return f"An error occured while loading the adapter: {e}."
|
16 |
+
|
17 |
return pipeline(prompt=f"{prompt}\nDO NOT INCLUDE {negative_prompt}", width=width, height=height, num_inference_steps=sample_steps, generator=torch.Generator("cpu").manual_seed(42), guidance_scale=7).images[0]
|
18 |
|
19 |
with gr.Blocks() as interface:
|
|
|
33 |
height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=512, minimum=128, maximum=4096, step=64, interactive=True)
|
34 |
with gr.Column():
|
35 |
sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True)
|
36 |
+
lora_id = gr.Textbox(label="Adapter Repository", info="ID of the FLUX LoRA", value="pepper13/fluxfw")
|
37 |
|
38 |
+
generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps, lora_id], outputs=[output])
|
39 |
|
40 |
if __name__ == "__main__":
|
41 |
interface.launch()
|