SIGMitch commited on
Commit
f3ac33c
·
verified ·
1 Parent(s): c69b53e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -4
app.py CHANGED
@@ -6,20 +6,24 @@ from diffusers import FluxPipeline
6
  from huggingface_hub.utils import RepositoryNotFoundError
7
 
8
  pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16).to("cuda")
 
9
 
10
  @spaces.GPU(duration=70)
11
- def generate(prompt, negative_prompt, width, height, sample_steps, lora_id):
12
  try:
13
- pipeline.load_lora_weights(lora_id)
 
 
14
  except RepositoryNotFoundError:
15
  raise ValueError(f"Recieved invalid FLUX LoRA.")
16
 
17
- return pipeline(prompt=f"{prompt}\nDO NOT INCLUDE {negative_prompt}", width=width, height=height, num_inference_steps=sample_steps, generator=torch.Generator("cpu").manual_seed(42), guidance_scale=7).images[0]
18
 
19
  with gr.Blocks() as interface:
20
  with gr.Column():
21
  with gr.Row():
22
  with gr.Column():
 
23
  prompt = gr.Textbox(label="Prompt", info="What do you want?", value="Keanu Reeves holding a neon sign reading 'Hello, world!', 32k HDR, paparazzi", lines=4, interactive=True)
24
  negative_prompt = gr.Textbox(label="Negative Prompt", info="What do you want to exclude from the image?", value="ugly, low quality", lines=4, interactive=True)
25
  with gr.Column():
@@ -35,7 +39,7 @@ with gr.Blocks() as interface:
35
  sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True)
36
  lora_id = gr.Textbox(label="Adapter Repository", info="ID of the FLUX LoRA", value="pepper13/fluxfw")
37
 
38
- generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps, lora_id], outputs=[output])
39
 
40
  if __name__ == "__main__":
41
  interface.launch()
 
6
  from huggingface_hub.utils import RepositoryNotFoundError
7
 
8
  pipeline = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16).to("cuda")
9
+ pipelineImg = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16).to("cuda")
10
 
11
  @spaces.GPU(duration=70)
12
+ def generate(image, prompt, negative_prompt, width, height, sample_steps, lora_id):
13
  try:
14
+ # pipeline.load_lora_weights(lora_id)
15
+ init_image = load_image(image).resize((1024, 1024))
16
+ pipelineImg.load_lora_weights(lora_id)
17
  except RepositoryNotFoundError:
18
  raise ValueError(f"Recieved invalid FLUX LoRA.")
19
 
20
+ return pipeline(prompt=f"{prompt}\nDO NOT INCLUDE {negative_prompt}", image=init_image, width=width, height=height, num_inference_steps=sample_steps, generator=torch.Generator("cpu").manual_seed(42), guidance_scale=7).images[0]
21
 
22
  with gr.Blocks() as interface:
23
  with gr.Column():
24
  with gr.Row():
25
  with gr.Column():
26
+ image = gr.Image(label="Input image", show_label=False, type="filepath")
27
  prompt = gr.Textbox(label="Prompt", info="What do you want?", value="Keanu Reeves holding a neon sign reading 'Hello, world!', 32k HDR, paparazzi", lines=4, interactive=True)
28
  negative_prompt = gr.Textbox(label="Negative Prompt", info="What do you want to exclude from the image?", value="ugly, low quality", lines=4, interactive=True)
29
  with gr.Column():
 
39
  sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True)
40
  lora_id = gr.Textbox(label="Adapter Repository", info="ID of the FLUX LoRA", value="pepper13/fluxfw")
41
 
42
+ generate_button.click(fn=generate, inputs=[image, prompt, negative_prompt, width, height, sampling_steps, lora_id], outputs=[output])
43
 
44
  if __name__ == "__main__":
45
  interface.launch()