File size: 7,817 Bytes
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c459ff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c459ff0
 
0f079b2
 
 
 
 
 
c459ff0
 
 
 
 
0f079b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
import numpy as np
import torch
import PIL
from PIL import Image
import os
import sys
import rembg
import time
import json
import cv2
from datetime import datetime
from einops import repeat, rearrange
from omegaconf import OmegaConf
from typing import Dict, Optional, Tuple, List
from dataclasses import dataclass
from .utils import *
from huggingface_hub import hf_hub_download

parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

    
@dataclass
class TestConfig:
    pretrained_model_name_or_path: str
    pretrained_unet_path: str
    revision: Optional[str]
    validation_dataset: Dict
    save_dir: str
    seed: Optional[int]
    validation_batch_size: int
    dataloader_num_workers: int

    local_rank: int

    pipe_kwargs: Dict
    pipe_validation_kwargs: Dict
    unet_from_pretrained_kwargs: Dict
    validation_guidance_scales: List[float]
    validation_grid_nrow: int
    camera_embedding_lr_mult: float

    num_views: int
    camera_embedding_type: str

    pred_type: str  # joint, or ablation

    enable_xformers_memory_efficient_attention: bool

    cond_on_normals: bool
    cond_on_colors: bool

class GenMVImage(object):
    def __init__(self, device):
        self.seed = 1024
        self.guidance_scale = 7.5
        self.step = 50
        self.pipelines = {}
        self.device = device
        
    def gen_image_from_crm(self, image):
        
        from .third_party.CRM.pipelines import TwoStagePipeline
        specs = json.load(open(f"{parent_dir}/apps/third_party/CRM/configs/specs_objaverse_total.json"))
        stage1_config = OmegaConf.load(f"{parent_dir}/apps/third_party/CRM/configs/nf7_v3_SNR_rd_size_stroke.yaml").config
        stage1_sampler_config = stage1_config.sampler
        stage1_model_config = stage1_config.models
        stage1_model_config.resume = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth", repo_type="model")
        stage1_model_config.config = f"{parent_dir}/apps/third_party/CRM/" + stage1_model_config.config
        if "crm" in self.pipelines.keys():
            pipeline = self.pipelines['crm']
        else:
            self.pipelines['crm'] = TwoStagePipeline(
                                        stage1_model_config,
                                        stage1_sampler_config,
                                        device=self.device,
                                        dtype=torch.float16
                                    )
            pipeline = self.pipelines['crm']
        pipeline.set_seed(self.seed)
        rt_dict = pipeline(image, scale=self.guidance_scale, step=self.step)
        mv_imgs = rt_dict["stage1_images"]
        return mv_imgs[5], mv_imgs[3], mv_imgs[2], mv_imgs[0]
    
    def gen_image_from_mvdream(self, image, text):
        from .third_party.mvdream_diffusers.pipeline_mvdream import MVDreamPipeline
        if image is None:
            if "mvdream" in self.pipelines.keys():
                pipe_MVDream = self.pipelines['mvdream']
            else:
                self.pipelines['mvdream'] = MVDreamPipeline.from_pretrained(
                    "ashawkey/mvdream-sd2.1-diffusers", # remote weights
                    torch_dtype=torch.float16,
                    trust_remote_code=True,
                )
                self.pipelines['mvdream'] = self.pipelines['mvdream'].to(self.device)
                pipe_MVDream = self.pipelines['mvdream']
            mv_imgs = pipe_MVDream(
                    text,
                    negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
                    num_inference_steps=self.step,
                    guidance_scale=self.guidance_scale,
                    generator = torch.Generator(self.device).manual_seed(self.seed)
                )
        else:
            image = np.array(image)
            image = image.astype(np.float32) / 255.0
            image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
            if "imagedream" in self.pipelines.keys():
                pipe_imagedream = self.pipelines['imagedream']
            else:
                self.pipelines['imagedream'] = MVDreamPipeline.from_pretrained(
                        "ashawkey/imagedream-ipmv-diffusers", # remote weights
                        torch_dtype=torch.float16,
                        trust_remote_code=True,
                    )
                self.pipelines['imagedream'] = self.pipelines['imagedream'].to(self.device)
                pipe_imagedream = self.pipelines['imagedream']
            mv_imgs = pipe_imagedream(
                        text,
                        image,
                        negative_prompt="ugly, deformed, disfigured, poor details, bad anatomy",
                        num_inference_steps=self.step,
                        guidance_scale=self.guidance_scale,
                        generator = torch.Generator(self.device).manual_seed(self.seed)
                    )
        return mv_imgs[1], mv_imgs[2], mv_imgs[3], mv_imgs[0]
    
    def gen_image_from_wonder3d(self, image, crop_size):
        from diffusers import DiffusionPipeline  # only tested on diffusers[torch]==0.19.3, may have conflicts with newer versions of diffusers

        weight_dtype = torch.float16
        batch = prepare_data(image, crop_size)

        if "wonder3d" in self.pipelines.keys():
            pipeline = self.pipelines['wonder3d']
        else:
            self.pipelines['wonder3d'] =  DiffusionPipeline.from_pretrained(
            'flamehaze1115/wonder3d-v1.0', # or use local checkpoint './ckpts'
            custom_pipeline='flamehaze1115/wonder3d-pipeline',
            torch_dtype=torch.float16
            )
            self.pipelines['wonder3d'].unet.enable_xformers_memory_efficient_attention()
            self.pipelines['wonder3d'].to(self.device)
            self.pipelines['wonder3d'].set_progress_bar_config(disable=True)
            pipeline = self.pipelines['wonder3d']
            
        generator = torch.Generator(device=pipeline.unet.device).manual_seed(self.seed)
        # repeat  (2B, Nv, 3, H, W)
        imgs_in = torch.cat([batch['imgs_in']] * 2, dim=0).to(weight_dtype)

        # (2B, Nv, Nce)
        camera_embeddings = torch.cat([batch['camera_embeddings']] * 2, dim=0).to(weight_dtype)

        task_embeddings = torch.cat([batch['normal_task_embeddings'], batch['color_task_embeddings']], dim=0).to(weight_dtype)

        camera_embeddings = torch.cat([camera_embeddings, task_embeddings], dim=-1).to(weight_dtype)

        # (B*Nv, 3, H, W)
        imgs_in = rearrange(imgs_in, "Nv C H W -> (Nv) C H W")
        # (B*Nv, Nce)

        out = pipeline(
            imgs_in,
            # camera_embeddings,
            generator=generator,
            guidance_scale=self.guidance_scale,
            num_inference_steps=self.step,
            output_type='pt',
            num_images_per_prompt=1,
            **{'eta': 1.0},
        ).images

        bsz = out.shape[0] // 2
        normals_pred = out[:bsz]
        images_pred = out[bsz:]

        normals_pred = [save_image(normals_pred[i]) for i in range(bsz)]
        images_pred = [save_image(images_pred[i]) for i in range(bsz)]

        mv_imgs = images_pred
        return mv_imgs[0], mv_imgs[2], mv_imgs[4], mv_imgs[5]
        
    def run(self, mvimg_model, text, image, crop_size, seed, guidance_scale, step):
        self.seed = seed
        self.guidance_scale = guidance_scale
        self.step = step
        if mvimg_model.upper() == "CRM":
            return self.gen_image_from_crm(image)
        elif mvimg_model.upper() == "IMAGEDREAM":
            return self.gen_image_from_mvdream(image, text)
        elif mvimg_model.upper() == "WONDER3D":
            return self.gen_image_from_wonder3d(image, crop_size)