Spaces:
Sleeping
Sleeping
import transformers | |
import torch | |
import torchvision | |
from transformers import TrainingArguments, Trainer | |
from transformers import ViTImageProcessor | |
from transformers import ViTForImageClassification | |
from torch.utils.data import DataLoader | |
from datasets import load_dataset | |
from torchvision.transforms import (CenterCrop, | |
Compose, | |
Normalize, | |
RandomHorizontalFlip, | |
RandomResizedCrop, | |
Resize, | |
ToTensor) | |
from transformers import ViTImageProcessor, ViTForImageClassification | |
from PIL import Image | |
import torch | |
import torch.nn.functional as F | |
import time | |
import gradio as gr | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
processor = ViTImageProcessor.from_pretrained("ViT_LCZs_v2",local_files_only=True) | |
model = ViTForImageClassification.from_pretrained("ViT_LCZs_v2",local_files_only=True).to(device) | |
def predict(image): | |
inputs = processor(images=image, return_tensors="pt").to(device) | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_class_prob = F.softmax(logits, dim=-1).detach().cpu().numpy().max() | |
predicted_class_idx = logits.argmax(-1).item() | |
label = model.config.id2label[predicted_class_idx].split(",")[0] | |
time.sleep(2) | |
return {label: float(predicted_class_prob)} | |
examples = [['data/closed_highrise.png'], ['data/open_lowrise.png'],['data/dense_trees.png'],['data/large_lowrise.png']] | |
gr.Interface(predict, gr.Image(type="pil"), "label", examples=examples).launch() |