Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -25,16 +25,46 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
25 |
processor = ViTImageProcessor.from_pretrained("ViT_LCZs_v3",local_files_only=True)
|
26 |
model = ViTForImageClassification.from_pretrained("ViT_LCZs_v3",local_files_only=True).to(device)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
logits = outputs.logits
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
gr.Interface(predict, gr.Image(type="pil"), "label", examples=examples).launch()
|
|
|
25 |
processor = ViTImageProcessor.from_pretrained("ViT_LCZs_v3",local_files_only=True)
|
26 |
model = ViTForImageClassification.from_pretrained("ViT_LCZs_v3",local_files_only=True).to(device)
|
27 |
|
28 |
+
import os, glob
|
29 |
+
|
30 |
+
examples_dir = './samples'
|
31 |
+
example_files = glob.glob(os.path.join(examples_dir, '*.jpg'))
|
32 |
+
|
33 |
+
def classify_image(image):
|
34 |
+
|
35 |
+
with torch.no_grad():
|
36 |
+
model.eval()
|
37 |
+
|
38 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
39 |
+
outputs = model(**inputs)
|
40 |
+
|
41 |
logits = outputs.logits
|
42 |
+
prob = torch.nn.functional.softmax(logits, dim=1)
|
43 |
+
|
44 |
+
top10_prob, top10_indices = torch.topk(prob, 10)
|
45 |
+
top10_confidences = {}
|
46 |
+
for i in range(10):
|
47 |
+
top10_confidences[model.config.id2label[int(top10_indices[0][i])]] = float(top10_prob[0][i])
|
48 |
+
|
49 |
+
return top10_confidences #confidences
|
50 |
+
|
51 |
+
|
52 |
+
with gr.Blocks(title="ViT LCZ Classification - ClassCat",
|
53 |
+
css=".gradio-container {background:white;}"
|
54 |
+
) as demo:
|
55 |
+
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">LCZ Classification with ViT</div>""")
|
56 |
+
|
57 |
+
with gr.Row():
|
58 |
+
input_image = gr.Image(type="pil", image_mode="RGB", shape=(224, 224))
|
59 |
+
output_label=gr.Label(label="Probabilities", num_top_classes=3)
|
60 |
|
61 |
+
send_btn = gr.Button("Infer")
|
62 |
+
send_btn.click(fn=classify_image, inputs=input_image, outputs=output_label)
|
63 |
+
|
64 |
+
with gr.Row():
|
65 |
+
gr.Examples(['data/closed_highrise.png'], label='Sample images : cat', inputs=input_image)
|
66 |
+
gr.Examples(['data/open_lowrise.png'], label='cheetah', inputs=input_image)
|
67 |
+
gr.Examples(['data/dense_trees.png'], label='hotdog', inputs=input_image)
|
68 |
+
gr.Examples(['data/large_lowrise.png'], label='lion', inputs=input_image)
|
69 |
|
70 |
+
demo.launch(debug=True)
|
|