Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,14 @@
|
|
1 |
-
import transformers
|
2 |
import torch
|
3 |
-
import torchvision
|
4 |
-
from transformers import TrainingArguments, Trainer
|
5 |
-
from transformers import ViTImageProcessor
|
6 |
-
from transformers import ViTForImageClassification
|
7 |
-
from torch.utils.data import DataLoader
|
8 |
-
from datasets import load_dataset
|
9 |
-
from torchvision.transforms import (CenterCrop,
|
10 |
-
Compose,
|
11 |
-
Normalize,
|
12 |
-
RandomHorizontalFlip,
|
13 |
-
RandomResizedCrop,
|
14 |
-
Resize,
|
15 |
-
ToTensor)
|
16 |
from transformers import ViTImageProcessor, ViTForImageClassification
|
17 |
from PIL import Image
|
18 |
-
import torch
|
19 |
import torch.nn.functional as F
|
20 |
-
import time
|
21 |
import gradio as gr
|
22 |
|
23 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
24 |
|
25 |
processor = ViTImageProcessor.from_pretrained("ViT_LCZs_v3",local_files_only=True)
|
26 |
model = ViTForImageClassification.from_pretrained("ViT_LCZs_v3",local_files_only=True).to(device)
|
27 |
-
|
28 |
-
import os, glob
|
29 |
|
30 |
-
examples_dir = './samples'
|
31 |
-
example_files = glob.glob(os.path.join(examples_dir, '*.jpg'))
|
32 |
|
33 |
def classify_image(image):
|
34 |
|
|
|
|
|
1 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import ViTImageProcessor, ViTForImageClassification
|
3 |
from PIL import Image
|
|
|
4 |
import torch.nn.functional as F
|
|
|
5 |
import gradio as gr
|
6 |
|
7 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
8 |
|
9 |
processor = ViTImageProcessor.from_pretrained("ViT_LCZs_v3",local_files_only=True)
|
10 |
model = ViTForImageClassification.from_pretrained("ViT_LCZs_v3",local_files_only=True).to(device)
|
|
|
|
|
11 |
|
|
|
|
|
12 |
|
13 |
def classify_image(image):
|
14 |
|