Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import ViTImageProcessor, ViTForImageClassification
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import time
|
6 |
+
|
7 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
8 |
+
|
9 |
+
processor = ViTImageProcessor.from_pretrained("LCZs_v2",local_files_only=True)
|
10 |
+
model = ViTForImageClassification.from_pretrained("LCZs_v2",local_files_only=True).to(device)
|
11 |
+
|
12 |
+
def predict(image):
|
13 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
14 |
+
outputs = model(**inputs)
|
15 |
+
logits = outputs.logits
|
16 |
+
predicted_class_prob = F.softmax(logits, dim=-1).detach().cpu().numpy().max()
|
17 |
+
predicted_class_idx = logits.argmax(-1).item()
|
18 |
+
label = model.config.id2label[predicted_class_idx].split(",")[0]
|
19 |
+
time.sleep(2)
|
20 |
+
return {label: float(predicted_class_prob)}
|
21 |
+
import gradio as gr
|
22 |
+
|
23 |
+
gr.Interface(predict, gr.Image(type="pil"), "label").launch()
|