ubuntu commited on
Commit
3fdc2a4
1 Parent(s): 1905078

Initial Commit

Browse files
app.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import shutil
4
+ import gradio as gr
5
+ from detect import detect
6
+ import pygmtools as pygm
7
+
8
+
9
+ # Define file address constant
10
+ FD_IMG_DEFAULT_PATH = "media/fake_detect_default.png"
11
+ FD_SOLUTION_PATH = "media/fake_detect_pie.png"
12
+ PRETRAINED_PATH = "fc_weights.pth"
13
+
14
+
15
+ def _handle_fd_solve(img_path: str):
16
+ # Check file upload status
17
+ if img_path is None:
18
+ raise gr.Error("Please upload file completely!")
19
+
20
+ # gzip
21
+ os.system("gzip clip/bpe_simple_vocab_16e6.txt")
22
+
23
+ # Begin solve and record the solving time
24
+ start_time = time.time()
25
+ detect(
26
+ img_path=img_path,
27
+ save_path=FD_SOLUTION_PATH,
28
+ pretrained_path=PRETRAINED_PATH
29
+ )
30
+ solved_time = time.time() - start_time
31
+
32
+ # Message
33
+ message = "Successfully detect the image, using time ({:.3f}s).".format(solved_time)
34
+
35
+ return message, FD_SOLUTION_PATH
36
+
37
+
38
+ def handle_fd_solve(img_path: str):
39
+ try:
40
+ message = _handle_fd_solve(img_path)
41
+ return message
42
+ except Exception as e:
43
+ message = str(e)
44
+ return message, FD_SOLUTION_PATH
45
+
46
+
47
+ def handle_ged_clear():
48
+ # Replace the original image with the default image
49
+ shutil.copy(
50
+ src=FD_IMG_DEFAULT_PATH,
51
+ dst=FD_SOLUTION_PATH
52
+ )
53
+
54
+ message = "successfully clear the files!"
55
+ return message, FD_SOLUTION_PATH
56
+
57
+
58
+ with gr.Blocks() as ged_page:
59
+
60
+ gr.Markdown(
61
+ '''
62
+ This space displays that how to detect the images generated by AI.
63
+ ## How to use this Space?
64
+ - Upload a '.png' or '.jpg' image.
65
+ - The detection result will be shown after you click the detect button.
66
+ - Click the 'clear' button to clear all the files.
67
+ ## Examples
68
+ - You can get the test examples from our [FakeDetect Dataset Repo.](https://huggingface.co/datasets/SJTU-TES/FakeDetect)
69
+ '''
70
+ )
71
+
72
+ with gr.Row(variant="panel"):
73
+ with gr.Column(scale=1):
74
+ with gr.Row():
75
+ fd_img = gr.Image(
76
+ type="filepath"
77
+ )
78
+ info = gr.Textbox(
79
+ value="",
80
+ label="Log",
81
+ scale=4,
82
+ )
83
+ with gr.Row():
84
+ with gr.Column(scale=1, min_width=100):
85
+ solve_button = gr.Button(
86
+ value="Detect",
87
+ variant="primary",
88
+ scale=1
89
+ )
90
+ with gr.Column(scale=1, min_width=100):
91
+ clear_button = gr.Button(
92
+ "Clear",
93
+ variant="secondary",
94
+ scale=1
95
+ )
96
+ with gr.Column(scale=8):
97
+ pass
98
+ with gr.Row(variant="panel"):
99
+ fd_solution = gr.Image(
100
+ value=FD_SOLUTION_PATH,
101
+ type="filepath",
102
+ label="Detection Result"
103
+ )
104
+
105
+
106
+
107
+ solve_button.click(
108
+ handle_fd_solve,
109
+ [fd_img],
110
+ outputs=[info, fd_solution]
111
+ )
112
+
113
+ clear_button.click(
114
+ handle_ged_clear,
115
+ inputs=None,
116
+ outputs=[info, fd_solution]
117
+ )
118
+
119
+
120
+ if __name__ == "__main__":
121
+ ged_page.launch(debug = True)
clip/bpe_simple_vocab_16e6.txt ADDED
The diff for this file is too large to render. See raw diff
 
clip/clip.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import os
3
+ import urllib
4
+ import warnings
5
+ from typing import Any, Union, List
6
+ from pkg_resources import packaging
7
+
8
+ import torch
9
+ from PIL import Image
10
+ from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
11
+ from tqdm import tqdm
12
+
13
+ from .model import build_model
14
+ from .simple_tokenizer import SimpleTokenizer as _Tokenizer
15
+
16
+ try:
17
+ from torchvision.transforms import InterpolationMode
18
+ BICUBIC = InterpolationMode.BICUBIC
19
+ except ImportError:
20
+ BICUBIC = Image.BICUBIC
21
+
22
+
23
+ if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"):
24
+ warnings.warn("PyTorch version 1.7.1 or higher is recommended")
25
+
26
+
27
+ __all__ = ["available_models", "load", "tokenize"]
28
+ _tokenizer = _Tokenizer()
29
+
30
+ _MODELS = {
31
+ "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
32
+ "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
33
+ "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
34
+ "RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
35
+ "RN50x64": "https://openaipublic.azureedge.net/clip/models/be1cfb55d75a9666199fb2206c106743da0f6468c9d327f3e0d0a543a9919d9c/RN50x64.pt",
36
+ "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
37
+ "ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
38
+ "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
39
+ "ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt",
40
+ }
41
+
42
+
43
+ def _download(url: str, root: str):
44
+ os.makedirs(root, exist_ok=True)
45
+ filename = os.path.basename(url)
46
+
47
+ expected_sha256 = url.split("/")[-2]
48
+ download_target = os.path.join(root, filename)
49
+
50
+ if os.path.exists(download_target) and not os.path.isfile(download_target):
51
+ raise RuntimeError(f"{download_target} exists and is not a regular file")
52
+
53
+ if os.path.isfile(download_target):
54
+ if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
55
+ return download_target
56
+ else:
57
+ warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
58
+
59
+ with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
60
+ with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
61
+ while True:
62
+ buffer = source.read(8192)
63
+ if not buffer:
64
+ break
65
+
66
+ output.write(buffer)
67
+ loop.update(len(buffer))
68
+
69
+ if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
70
+ raise RuntimeError("Model has been downloaded but the SHA256 checksum does not not match")
71
+
72
+ return download_target
73
+
74
+
75
+ def _convert_image_to_rgb(image):
76
+ return image.convert("RGB")
77
+
78
+
79
+ def _transform(n_px):
80
+ return Compose([
81
+ Resize(n_px, interpolation=BICUBIC),
82
+ CenterCrop(n_px),
83
+ _convert_image_to_rgb,
84
+ ToTensor(),
85
+ Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
86
+ ])
87
+
88
+
89
+ def available_models() -> List[str]:
90
+ """Returns the names of available CLIP models"""
91
+ return list(_MODELS.keys())
92
+
93
+
94
+ def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit: bool = False, download_root: str = None):
95
+ """Load a CLIP model
96
+
97
+ Parameters
98
+ ----------
99
+ name : str
100
+ A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
101
+
102
+ device : Union[str, torch.device]
103
+ The device to put the loaded model
104
+
105
+ jit : bool
106
+ Whether to load the optimized JIT model or more hackable non-JIT model (default).
107
+
108
+ download_root: str
109
+ path to download the model files; by default, it uses "~/.cache/clip"
110
+
111
+ Returns
112
+ -------
113
+ model : torch.nn.Module
114
+ The CLIP model
115
+
116
+ preprocess : Callable[[PIL.Image], torch.Tensor]
117
+ A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
118
+ """
119
+ if name in _MODELS:
120
+ model_path = _download(_MODELS[name], download_root or os.path.expanduser("~/.cache/clip"))
121
+ elif os.path.isfile(name):
122
+ model_path = name
123
+ else:
124
+ raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
125
+
126
+ with open(model_path, 'rb') as opened_file:
127
+ try:
128
+ # loading JIT archive
129
+ model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval()
130
+ state_dict = None
131
+ except RuntimeError:
132
+ # loading saved state dict
133
+ if jit:
134
+ warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
135
+ jit = False
136
+ state_dict = torch.load(opened_file, map_location="cpu")
137
+
138
+ if not jit:
139
+ model = build_model(state_dict or model.state_dict()).to(device)
140
+ if str(device) == "cpu":
141
+ model.float()
142
+ return model, _transform(model.visual.input_resolution)
143
+
144
+ # patch the device names
145
+ device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
146
+ device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
147
+
148
+ def patch_device(module):
149
+ try:
150
+ graphs = [module.graph] if hasattr(module, "graph") else []
151
+ except RuntimeError:
152
+ graphs = []
153
+
154
+ if hasattr(module, "forward1"):
155
+ graphs.append(module.forward1.graph)
156
+
157
+ for graph in graphs:
158
+ for node in graph.findAllNodes("prim::Constant"):
159
+ if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
160
+ node.copyAttributes(device_node)
161
+
162
+ model.apply(patch_device)
163
+ patch_device(model.encode_image)
164
+ patch_device(model.encode_text)
165
+
166
+ # patch dtype to float32 on CPU
167
+ if str(device) == "cpu":
168
+ float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
169
+ float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
170
+ float_node = float_input.node()
171
+
172
+ def patch_float(module):
173
+ try:
174
+ graphs = [module.graph] if hasattr(module, "graph") else []
175
+ except RuntimeError:
176
+ graphs = []
177
+
178
+ if hasattr(module, "forward1"):
179
+ graphs.append(module.forward1.graph)
180
+
181
+ for graph in graphs:
182
+ for node in graph.findAllNodes("aten::to"):
183
+ inputs = list(node.inputs())
184
+ for i in [1, 2]: # dtype can be the second or third argument to aten::to()
185
+ if inputs[i].node()["value"] == 5:
186
+ inputs[i].node().copyAttributes(float_node)
187
+
188
+ model.apply(patch_float)
189
+ patch_float(model.encode_image)
190
+ patch_float(model.encode_text)
191
+
192
+ model.float()
193
+
194
+ return model, _transform(model.input_resolution.item())
195
+
196
+
197
+ def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> Union[torch.IntTensor, torch.LongTensor]:
198
+ """
199
+ Returns the tokenized representation of given input string(s)
200
+
201
+ Parameters
202
+ ----------
203
+ texts : Union[str, List[str]]
204
+ An input string or a list of input strings to tokenize
205
+
206
+ context_length : int
207
+ The context length to use; all CLIP models use 77 as the context length
208
+
209
+ truncate: bool
210
+ Whether to truncate the text in case its encoding is longer than the context length
211
+
212
+ Returns
213
+ -------
214
+ A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length].
215
+ We return LongTensor when torch version is <1.8.0, since older index_select requires indices to be long.
216
+ """
217
+ if isinstance(texts, str):
218
+ texts = [texts]
219
+
220
+ sot_token = _tokenizer.encoder["<|startoftext|>"]
221
+ eot_token = _tokenizer.encoder["<|endoftext|>"]
222
+ all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
223
+ if packaging.version.parse(torch.__version__) < packaging.version.parse("1.8.0"):
224
+ result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
225
+ else:
226
+ result = torch.zeros(len(all_tokens), context_length, dtype=torch.int)
227
+
228
+ for i, tokens in enumerate(all_tokens):
229
+ if len(tokens) > context_length:
230
+ if truncate:
231
+ tokens = tokens[:context_length]
232
+ tokens[-1] = eot_token
233
+ else:
234
+ raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
235
+ result[i, :len(tokens)] = torch.tensor(tokens)
236
+
237
+ return result
clip/model.py ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import OrderedDict
2
+ from typing import Tuple, Union
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn.functional as F
7
+ from torch import nn
8
+
9
+
10
+ class Bottleneck(nn.Module):
11
+ expansion = 4
12
+
13
+ def __init__(self, inplanes, planes, stride=1):
14
+ super().__init__()
15
+
16
+ # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
17
+ self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
18
+ self.bn1 = nn.BatchNorm2d(planes)
19
+ self.relu1 = nn.ReLU(inplace=True)
20
+
21
+ self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
22
+ self.bn2 = nn.BatchNorm2d(planes)
23
+ self.relu2 = nn.ReLU(inplace=True)
24
+
25
+ self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
26
+
27
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
28
+ self.bn3 = nn.BatchNorm2d(planes * self.expansion)
29
+ self.relu3 = nn.ReLU(inplace=True)
30
+
31
+ self.downsample = None
32
+ self.stride = stride
33
+
34
+ if stride > 1 or inplanes != planes * Bottleneck.expansion:
35
+ # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
36
+ self.downsample = nn.Sequential(OrderedDict([
37
+ ("-1", nn.AvgPool2d(stride)),
38
+ ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
39
+ ("1", nn.BatchNorm2d(planes * self.expansion))
40
+ ]))
41
+
42
+ def forward(self, x: torch.Tensor):
43
+ identity = x
44
+
45
+ out = self.relu1(self.bn1(self.conv1(x)))
46
+ out = self.relu2(self.bn2(self.conv2(out)))
47
+ out = self.avgpool(out)
48
+ out = self.bn3(self.conv3(out))
49
+
50
+ if self.downsample is not None:
51
+ identity = self.downsample(x)
52
+
53
+ out += identity
54
+ out = self.relu3(out)
55
+ return out
56
+
57
+
58
+ class AttentionPool2d(nn.Module):
59
+ def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
60
+ super().__init__()
61
+ self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
62
+ self.k_proj = nn.Linear(embed_dim, embed_dim)
63
+ self.q_proj = nn.Linear(embed_dim, embed_dim)
64
+ self.v_proj = nn.Linear(embed_dim, embed_dim)
65
+ self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
66
+ self.num_heads = num_heads
67
+
68
+ def forward(self, x):
69
+ x = x.flatten(start_dim=2).permute(2, 0, 1) # NCHW -> (HW)NC
70
+ x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
71
+ x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
72
+ x, _ = F.multi_head_attention_forward(
73
+ query=x[:1], key=x, value=x,
74
+ embed_dim_to_check=x.shape[-1],
75
+ num_heads=self.num_heads,
76
+ q_proj_weight=self.q_proj.weight,
77
+ k_proj_weight=self.k_proj.weight,
78
+ v_proj_weight=self.v_proj.weight,
79
+ in_proj_weight=None,
80
+ in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
81
+ bias_k=None,
82
+ bias_v=None,
83
+ add_zero_attn=False,
84
+ dropout_p=0,
85
+ out_proj_weight=self.c_proj.weight,
86
+ out_proj_bias=self.c_proj.bias,
87
+ use_separate_proj_weight=True,
88
+ training=self.training,
89
+ need_weights=False
90
+ )
91
+ return x.squeeze(0)
92
+
93
+
94
+ class ModifiedResNet(nn.Module):
95
+ """
96
+ A ResNet class that is similar to torchvision's but contains the following changes:
97
+ - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
98
+ - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
99
+ - The final pooling layer is a QKV attention instead of an average pool
100
+ """
101
+
102
+ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
103
+ super().__init__()
104
+ self.output_dim = output_dim
105
+ self.input_resolution = input_resolution
106
+
107
+ # the 3-layer stem
108
+ self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
109
+ self.bn1 = nn.BatchNorm2d(width // 2)
110
+ self.relu1 = nn.ReLU(inplace=True)
111
+ self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
112
+ self.bn2 = nn.BatchNorm2d(width // 2)
113
+ self.relu2 = nn.ReLU(inplace=True)
114
+ self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
115
+ self.bn3 = nn.BatchNorm2d(width)
116
+ self.relu3 = nn.ReLU(inplace=True)
117
+ self.avgpool = nn.AvgPool2d(2)
118
+
119
+ # residual layers
120
+ self._inplanes = width # this is a *mutable* variable used during construction
121
+ self.layer1 = self._make_layer(width, layers[0])
122
+ self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
123
+ self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
124
+ self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
125
+
126
+ embed_dim = width * 32 # the ResNet feature dimension
127
+ self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
128
+
129
+ def _make_layer(self, planes, blocks, stride=1):
130
+ layers = [Bottleneck(self._inplanes, planes, stride)]
131
+
132
+ self._inplanes = planes * Bottleneck.expansion
133
+ for _ in range(1, blocks):
134
+ layers.append(Bottleneck(self._inplanes, planes))
135
+
136
+ return nn.Sequential(*layers)
137
+
138
+ def forward(self, x):
139
+ def stem(x):
140
+ x = self.relu1(self.bn1(self.conv1(x)))
141
+ x = self.relu2(self.bn2(self.conv2(x)))
142
+ x = self.relu3(self.bn3(self.conv3(x)))
143
+ x = self.avgpool(x)
144
+ return x
145
+
146
+ x = x.type(self.conv1.weight.dtype)
147
+ x = stem(x)
148
+ x = self.layer1(x)
149
+ x = self.layer2(x)
150
+ x = self.layer3(x)
151
+ x = self.layer4(x)
152
+ x = self.attnpool(x)
153
+
154
+ return x
155
+
156
+
157
+ class LayerNorm(nn.LayerNorm):
158
+ """Subclass torch's LayerNorm to handle fp16."""
159
+
160
+ def forward(self, x: torch.Tensor):
161
+ orig_type = x.dtype
162
+ ret = super().forward(x.type(torch.float32))
163
+ return ret.type(orig_type)
164
+
165
+
166
+ class QuickGELU(nn.Module):
167
+ def forward(self, x: torch.Tensor):
168
+ return x * torch.sigmoid(1.702 * x)
169
+
170
+
171
+ class ResidualAttentionBlock(nn.Module):
172
+ def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
173
+ super().__init__()
174
+
175
+ self.attn = nn.MultiheadAttention(d_model, n_head)
176
+ self.ln_1 = LayerNorm(d_model)
177
+ self.mlp = nn.Sequential(OrderedDict([
178
+ ("c_fc", nn.Linear(d_model, d_model * 4)),
179
+ ("gelu", QuickGELU()),
180
+ ("c_proj", nn.Linear(d_model * 4, d_model))
181
+ ]))
182
+ self.ln_2 = LayerNorm(d_model)
183
+ self.attn_mask = attn_mask
184
+
185
+ def attention(self, x: torch.Tensor):
186
+ self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
187
+ return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
188
+
189
+ def forward(self, x: torch.Tensor):
190
+ x = x + self.attention(self.ln_1(x))
191
+ x = x + self.mlp(self.ln_2(x))
192
+ return x
193
+
194
+
195
+ class Transformer(nn.Module):
196
+ def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
197
+ super().__init__()
198
+ self.width = width
199
+ self.layers = layers
200
+ self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
201
+
202
+ def forward(self, x: torch.Tensor):
203
+ out = {}
204
+ for idx, layer in enumerate(self.resblocks.children()):
205
+ x = layer(x)
206
+ out['layer'+str(idx)] = x[0] # shape:LND. choose cls token feature
207
+ return out, x
208
+
209
+ # return self.resblocks(x) # This is the original code
210
+
211
+
212
+ class VisionTransformer(nn.Module):
213
+ def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
214
+ super().__init__()
215
+ self.input_resolution = input_resolution
216
+ self.output_dim = output_dim
217
+ self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
218
+
219
+ scale = width ** -0.5
220
+ self.class_embedding = nn.Parameter(scale * torch.randn(width))
221
+ self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
222
+ self.ln_pre = LayerNorm(width)
223
+
224
+ self.transformer = Transformer(width, layers, heads)
225
+
226
+ self.ln_post = LayerNorm(width)
227
+ self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
228
+
229
+
230
+
231
+ def forward(self, x: torch.Tensor):
232
+ x = self.conv1(x) # shape = [*, width, grid, grid]
233
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
234
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
235
+ x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
236
+ x = x + self.positional_embedding.to(x.dtype)
237
+ x = self.ln_pre(x)
238
+
239
+ x = x.permute(1, 0, 2) # NLD -> LND
240
+ out, x = self.transformer(x)
241
+ x = x.permute(1, 0, 2) # LND -> NLD
242
+
243
+ x = self.ln_post(x[:, 0, :])
244
+
245
+
246
+ out['before_projection'] = x
247
+
248
+ if self.proj is not None:
249
+ x = x @ self.proj
250
+ out['after_projection'] = x
251
+
252
+ # Return both intermediate features and final clip feature
253
+ # return out
254
+
255
+ # This only returns CLIP features
256
+ return x
257
+
258
+
259
+ class CLIP(nn.Module):
260
+ def __init__(self,
261
+ embed_dim: int,
262
+ # vision
263
+ image_resolution: int,
264
+ vision_layers: Union[Tuple[int, int, int, int], int],
265
+ vision_width: int,
266
+ vision_patch_size: int,
267
+ # text
268
+ context_length: int,
269
+ vocab_size: int,
270
+ transformer_width: int,
271
+ transformer_heads: int,
272
+ transformer_layers: int
273
+ ):
274
+ super().__init__()
275
+
276
+ self.context_length = context_length
277
+
278
+ if isinstance(vision_layers, (tuple, list)):
279
+ vision_heads = vision_width * 32 // 64
280
+ self.visual = ModifiedResNet(
281
+ layers=vision_layers,
282
+ output_dim=embed_dim,
283
+ heads=vision_heads,
284
+ input_resolution=image_resolution,
285
+ width=vision_width
286
+ )
287
+ else:
288
+ vision_heads = vision_width // 64
289
+ self.visual = VisionTransformer(
290
+ input_resolution=image_resolution,
291
+ patch_size=vision_patch_size,
292
+ width=vision_width,
293
+ layers=vision_layers,
294
+ heads=vision_heads,
295
+ output_dim=embed_dim
296
+ )
297
+
298
+ self.transformer = Transformer(
299
+ width=transformer_width,
300
+ layers=transformer_layers,
301
+ heads=transformer_heads,
302
+ attn_mask=self.build_attention_mask()
303
+ )
304
+
305
+ self.vocab_size = vocab_size
306
+ self.token_embedding = nn.Embedding(vocab_size, transformer_width)
307
+ self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
308
+ self.ln_final = LayerNorm(transformer_width)
309
+
310
+ self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
311
+ self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
312
+
313
+ self.initialize_parameters()
314
+
315
+ def initialize_parameters(self):
316
+ nn.init.normal_(self.token_embedding.weight, std=0.02)
317
+ nn.init.normal_(self.positional_embedding, std=0.01)
318
+
319
+ if isinstance(self.visual, ModifiedResNet):
320
+ if self.visual.attnpool is not None:
321
+ std = self.visual.attnpool.c_proj.in_features ** -0.5
322
+ nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
323
+ nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
324
+ nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
325
+ nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
326
+
327
+ for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
328
+ for name, param in resnet_block.named_parameters():
329
+ if name.endswith("bn3.weight"):
330
+ nn.init.zeros_(param)
331
+
332
+ proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
333
+ attn_std = self.transformer.width ** -0.5
334
+ fc_std = (2 * self.transformer.width) ** -0.5
335
+ for block in self.transformer.resblocks:
336
+ nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
337
+ nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
338
+ nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
339
+ nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
340
+
341
+ if self.text_projection is not None:
342
+ nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
343
+
344
+ def build_attention_mask(self):
345
+ # lazily create causal attention mask, with full attention between the vision tokens
346
+ # pytorch uses additive attention mask; fill with -inf
347
+ mask = torch.empty(self.context_length, self.context_length)
348
+ mask.fill_(float("-inf"))
349
+ mask.triu_(1) # zero out the lower diagonal
350
+ return mask
351
+
352
+ @property
353
+ def dtype(self):
354
+ return self.visual.conv1.weight.dtype
355
+
356
+ def encode_image(self, image):
357
+ return self.visual(image.type(self.dtype))
358
+
359
+ def encode_text(self, text):
360
+ x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
361
+
362
+ x = x + self.positional_embedding.type(self.dtype)
363
+ x = x.permute(1, 0, 2) # NLD -> LND
364
+ x = self.transformer(x)
365
+ x = x.permute(1, 0, 2) # LND -> NLD
366
+ x = self.ln_final(x).type(self.dtype)
367
+
368
+ # x.shape = [batch_size, n_ctx, transformer.width]
369
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
370
+ x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
371
+
372
+ return x
373
+
374
+ def forward(self, image, text):
375
+ image_features = self.encode_image(image)
376
+ text_features = self.encode_text(text)
377
+
378
+ # normalized features
379
+ image_features = image_features / image_features.norm(dim=1, keepdim=True)
380
+ text_features = text_features / text_features.norm(dim=1, keepdim=True)
381
+
382
+ # cosine similarity as logits
383
+ logit_scale = self.logit_scale.exp()
384
+ logits_per_image = logit_scale * image_features @ text_features.t()
385
+ logits_per_text = logits_per_image.t()
386
+
387
+ # shape = [global_batch_size, global_batch_size]
388
+ return logits_per_image, logits_per_text
389
+
390
+
391
+ def convert_weights(model: nn.Module):
392
+ """Convert applicable model parameters to fp16"""
393
+
394
+ def _convert_weights_to_fp16(l):
395
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
396
+ l.weight.data = l.weight.data.half()
397
+ if l.bias is not None:
398
+ l.bias.data = l.bias.data.half()
399
+
400
+ if isinstance(l, nn.MultiheadAttention):
401
+ for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
402
+ tensor = getattr(l, attr)
403
+ if tensor is not None:
404
+ tensor.data = tensor.data.half()
405
+
406
+ for name in ["text_projection", "proj"]:
407
+ if hasattr(l, name):
408
+ attr = getattr(l, name)
409
+ if attr is not None:
410
+ attr.data = attr.data.half()
411
+
412
+ model.apply(_convert_weights_to_fp16)
413
+
414
+
415
+ def build_model(state_dict: dict):
416
+ vit = "visual.proj" in state_dict
417
+
418
+ if vit:
419
+ vision_width = state_dict["visual.conv1.weight"].shape[0]
420
+ vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
421
+ vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
422
+ grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
423
+ image_resolution = vision_patch_size * grid_size
424
+ else:
425
+ counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
426
+ vision_layers = tuple(counts)
427
+ vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
428
+ output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
429
+ vision_patch_size = None
430
+ assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
431
+ image_resolution = output_width * 32
432
+
433
+ embed_dim = state_dict["text_projection"].shape[1]
434
+ context_length = state_dict["positional_embedding"].shape[0]
435
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
436
+ transformer_width = state_dict["ln_final.weight"].shape[0]
437
+ transformer_heads = transformer_width // 64
438
+ transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith("transformer.resblocks")))
439
+
440
+ model = CLIP(
441
+ embed_dim,
442
+ image_resolution, vision_layers, vision_width, vision_patch_size,
443
+ context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
444
+ )
445
+
446
+ for key in ["input_resolution", "context_length", "vocab_size"]:
447
+ if key in state_dict:
448
+ del state_dict[key]
449
+
450
+ convert_weights(model)
451
+ model.load_state_dict(state_dict)
452
+ return model.eval()
clip/simple_tokenizer.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gzip
2
+ import html
3
+ import os
4
+ from functools import lru_cache
5
+
6
+ import ftfy
7
+ import regex as re
8
+
9
+
10
+ @lru_cache()
11
+ def default_bpe():
12
+ return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
13
+
14
+
15
+ @lru_cache()
16
+ def bytes_to_unicode():
17
+ """
18
+ Returns list of utf-8 byte and a corresponding list of unicode strings.
19
+ The reversible bpe codes work on unicode strings.
20
+ This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
21
+ When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
22
+ This is a signficant percentage of your normal, say, 32K bpe vocab.
23
+ To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
24
+ And avoids mapping to whitespace/control characters the bpe code barfs on.
25
+ """
26
+ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
27
+ cs = bs[:]
28
+ n = 0
29
+ for b in range(2**8):
30
+ if b not in bs:
31
+ bs.append(b)
32
+ cs.append(2**8+n)
33
+ n += 1
34
+ cs = [chr(n) for n in cs]
35
+ return dict(zip(bs, cs))
36
+
37
+
38
+ def get_pairs(word):
39
+ """Return set of symbol pairs in a word.
40
+ Word is represented as tuple of symbols (symbols being variable-length strings).
41
+ """
42
+ pairs = set()
43
+ prev_char = word[0]
44
+ for char in word[1:]:
45
+ pairs.add((prev_char, char))
46
+ prev_char = char
47
+ return pairs
48
+
49
+
50
+ def basic_clean(text):
51
+ text = ftfy.fix_text(text)
52
+ text = html.unescape(html.unescape(text))
53
+ return text.strip()
54
+
55
+
56
+ def whitespace_clean(text):
57
+ text = re.sub(r'\s+', ' ', text)
58
+ text = text.strip()
59
+ return text
60
+
61
+
62
+ class SimpleTokenizer(object):
63
+ def __init__(self, bpe_path: str = default_bpe()):
64
+ self.byte_encoder = bytes_to_unicode()
65
+ self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
66
+ merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
67
+ merges = merges[1:49152-256-2+1]
68
+ merges = [tuple(merge.split()) for merge in merges]
69
+ vocab = list(bytes_to_unicode().values())
70
+ vocab = vocab + [v+'</w>' for v in vocab]
71
+ for merge in merges:
72
+ vocab.append(''.join(merge))
73
+ vocab.extend(['<|startoftext|>', '<|endoftext|>'])
74
+ self.encoder = dict(zip(vocab, range(len(vocab))))
75
+ self.decoder = {v: k for k, v in self.encoder.items()}
76
+ self.bpe_ranks = dict(zip(merges, range(len(merges))))
77
+ self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
78
+ self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
79
+
80
+ def bpe(self, token):
81
+ if token in self.cache:
82
+ return self.cache[token]
83
+ word = tuple(token[:-1]) + ( token[-1] + '</w>',)
84
+ pairs = get_pairs(word)
85
+
86
+ if not pairs:
87
+ return token+'</w>'
88
+
89
+ while True:
90
+ bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
91
+ if bigram not in self.bpe_ranks:
92
+ break
93
+ first, second = bigram
94
+ new_word = []
95
+ i = 0
96
+ while i < len(word):
97
+ try:
98
+ j = word.index(first, i)
99
+ new_word.extend(word[i:j])
100
+ i = j
101
+ except:
102
+ new_word.extend(word[i:])
103
+ break
104
+
105
+ if word[i] == first and i < len(word)-1 and word[i+1] == second:
106
+ new_word.append(first+second)
107
+ i += 2
108
+ else:
109
+ new_word.append(word[i])
110
+ i += 1
111
+ new_word = tuple(new_word)
112
+ word = new_word
113
+ if len(word) == 1:
114
+ break
115
+ else:
116
+ pairs = get_pairs(word)
117
+ word = ' '.join(word)
118
+ self.cache[token] = word
119
+ return word
120
+
121
+ def encode(self, text):
122
+ bpe_tokens = []
123
+ text = whitespace_clean(basic_clean(text)).lower()
124
+ for token in re.findall(self.pat, text):
125
+ token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
126
+ bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
127
+ return bpe_tokens
128
+
129
+ def decode(self, tokens):
130
+ text = ''.join([self.decoder[token] for token in tokens])
131
+ text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
132
+ return text
detect.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import numpy as np
3
+ import torchvision.transforms as transforms
4
+ from PIL import Image
5
+ from io import BytesIO
6
+ from scipy.ndimage import gaussian_filter
7
+ from model import CLIPViTL14Model
8
+ import seaborn as sns
9
+ import matplotlib.pyplot as plt
10
+
11
+
12
+
13
+ MEAN = {
14
+ "imagenet":[0.485, 0.456, 0.406],
15
+ "clip":[0.48145466, 0.4578275, 0.40821073]
16
+ }
17
+
18
+ STD = {
19
+ "imagenet":[0.229, 0.224, 0.225],
20
+ "clip":[0.26862954, 0.26130258, 0.27577711]
21
+ }
22
+
23
+
24
+ def png2jpg(img, quality):
25
+ out = BytesIO()
26
+ img.save(out, format='jpeg', quality=quality) # ranging from 0-95, 75 is default
27
+ img = Image.open(out)
28
+ # load from memory before ByteIO closes
29
+ img = np.array(img)
30
+ out.close()
31
+ return Image.fromarray(img)
32
+
33
+
34
+ def gaussian_blur(img, sigma):
35
+ img = np.array(img)
36
+
37
+ gaussian_filter(img[:,:,0], output=img[:,:,0], sigma=sigma)
38
+ gaussian_filter(img[:,:,1], output=img[:,:,1], sigma=sigma)
39
+ gaussian_filter(img[:,:,2], output=img[:,:,2], sigma=sigma)
40
+
41
+ return Image.fromarray(img)
42
+
43
+
44
+ def plot_pie_chart(false_prob, save_path):
45
+ labels = ['Real', 'Fake']
46
+ probabilities = [1-false_prob, false_prob]
47
+ colors = ['#ADD8E6', '#FFC0CB'] # 浅蓝色和浅红色
48
+ explode = (0.1, 0) # 设置偏移量
49
+
50
+ plt.figure(figsize=(6, 6))
51
+ plt.pie(probabilities, labels=labels, colors=colors, explode=explode, autopct='%1.1f%%', startangle=90)
52
+ plt.axis('equal')
53
+ plt.savefig(save_path)
54
+
55
+
56
+ def detect(
57
+ img_path: str,
58
+ save_path: str,
59
+ pretrained_path: str=None,
60
+ stat_from: str="clip",
61
+ gaussian_sigma: int=None,
62
+ jpeg_quality: int=None,
63
+ device: str="cpu"
64
+ ):
65
+ img = Image.open(img_path).convert("RGB")
66
+ if gaussian_sigma is not None:
67
+ img = gaussian_blur(img, gaussian_sigma)
68
+ if jpeg_quality is not None:
69
+ img = png2jpg(img, jpeg_quality)
70
+
71
+ # transform
72
+ transform = transforms.Compose([
73
+ transforms.Resize((224, 224)),
74
+ # transforms.CenterCrop(224),
75
+ transforms.ToTensor(),
76
+ transforms.Normalize( mean=MEAN[stat_from], std=STD[stat_from] ),
77
+ ])
78
+ img = transform(img)
79
+ img: torch.Tensor
80
+ if img.ndim == 3:
81
+ img = img.unsqueeze(dim=0)
82
+ img = img.to(device=device)
83
+ model = CLIPViTL14Model()
84
+ if pretrained_path:
85
+ state_dict = torch.load(pretrained_path, map_location=device)
86
+ model.fc.load_state_dict(state_dict)
87
+ model.eval()
88
+ model.to(device=device)
89
+ probs = model(img).sigmoid().flatten().tolist()[0]
90
+ plot_pie_chart(probs, save_path)
example/fake/fake_001.jpg ADDED
example/fake/fake_002.jpg ADDED
example/fake/fake_003.jpg ADDED
example/fake/fake_004.jpg ADDED
example/real/real_001.jpg ADDED
example/real/real_002.jpg ADDED
example/real/real_003.jpg ADDED
example/real/real_004.jpg ADDED
fc_weights.pth ADDED
Binary file (4.08 kB). View file
 
media/fake_detect_default.png ADDED
media/fake_detect_pie.png ADDED
model.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from clip.clip import load
2
+ import torch.nn as nn
3
+
4
+
5
+ class CLIPViTL14Model(nn.Module):
6
+ def __init__(self, num_classes=1):
7
+ super(CLIPViTL14Model, self).__init__()
8
+ self.model, self.preprocess = load("ViT-L/14", device="cpu")
9
+ self.fc = nn.Linear(768, num_classes)
10
+
11
+ def forward(self, x, return_feature=False):
12
+ features = self.model.encode_image(x)
13
+ if return_feature:
14
+ return features
15
+ return self.fc(features)
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ pygmtools
3
+ matplotlib
4
+ torch==2.0.0
5
+ torchvision==0.15.1
6
+ scikit-learn
7
+ ftfy
8
+ regex
9
+ seaborn