|
import threading
|
|
import numpy
|
|
import opennsfw2
|
|
from PIL import Image
|
|
from keras import Model
|
|
|
|
from roop.typing import Frame
|
|
|
|
PREDICTOR = None
|
|
THREAD_LOCK = threading.Lock()
|
|
MAX_PROBABILITY = 0.85
|
|
|
|
|
|
def get_predictor() -> Model:
|
|
global PREDICTOR
|
|
|
|
with THREAD_LOCK:
|
|
if PREDICTOR is None:
|
|
PREDICTOR = opennsfw2.make_open_nsfw_model()
|
|
return PREDICTOR
|
|
|
|
|
|
def clear_predictor() -> None:
|
|
global PREDICTOR
|
|
|
|
PREDICTOR = None
|
|
|
|
|
|
def predict_frame(target_frame: Frame) -> bool:
|
|
image = Image.fromarray(target_frame)
|
|
image = opennsfw2.preprocess_image(image, opennsfw2.Preprocessing.YAHOO)
|
|
views = numpy.expand_dims(image, axis=0)
|
|
_, probability = get_predictor().predict(views)[0]
|
|
return probability > MAX_PROBABILITY
|
|
|
|
|
|
def predict_image(target_path: str) -> bool:
|
|
return opennsfw2.predict_image(target_path) > MAX_PROBABILITY
|
|
|
|
|
|
def predict_video(target_path: str) -> bool:
|
|
_, probabilities = opennsfw2.predict_video_frames(video_path=target_path, frame_interval=100)
|
|
return any(probability > MAX_PROBABILITY for probability in probabilities)
|
|
|