File size: 7,793 Bytes
7ca9b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import torch
import torch.nn.functional as F
import numpy as np
import imageio
from math import pi
from tqdm import tqdm
from lib.data import get_dataloader, get_meanpose
from lib.util.general import get_config
from lib.util.visualization import motion2video_np, hex2rgb
import os

eps = 1e-16


def localize_motion_torch(motion):
    """
    :param motion: B x J x D x T
    :return:
    """
    B, J, D, T = motion.size()

    # subtract centers to local coordinates
    centers = motion[:, 8:9, :, :] # B x 1 x D x (T-1)
    motion = motion - centers

    # adding velocity
    translation = centers[:, :, :, 1:] - centers[:, :, :, :-1] # B x 1 x D x (T-1)
    velocity = F.pad(translation, [1, 0], "constant", 0.) # B x 1 x D x T
    motion = torch.cat([motion[:, :8], motion[:, 9:], velocity], dim=1)

    return motion


def normalize_motion_torch(motion, meanpose, stdpose):
    """
    :param motion: (B, J, D, T)
    :param meanpose: (J, D)
    :param stdpose: (J, D)
    :return:
    """
    B, J, D, T = motion.size()
    if D == 2 and meanpose.size(1) == 3:
        meanpose = meanpose[:, [0, 2]]
    if D == 2 and stdpose.size(1) == 3:
        stdpose = stdpose[:, [0, 2]]
    return (motion - meanpose.view(1, J, D, 1)) / stdpose.view(1, J, D, 1)


def normalize_motion_inv_torch(motion, meanpose, stdpose):
    """
    :param motion: (B, J, D, T)
    :param meanpose: (J, D)
    :param stdpose: (J, D)
    :return:
    """
    B, J, D, T = motion.size()
    if D == 2 and meanpose.size(1) == 3:
        meanpose = meanpose[:, [0, 2]]
    if D == 2 and stdpose.size(1) == 3:
        stdpose = stdpose[:, [0, 2]]
    return motion * stdpose.view(1, J, D, 1) + meanpose.view(1, J, D, 1)


def globalize_motion_torch(motion):
    """
    :param motion: B x J x D x T
    :return:
    """
    B, J, D, T = motion.size()

    motion_inv = torch.zeros_like(motion)
    motion_inv[:, :8] = motion[:, :8]
    motion_inv[:, 9:] = motion[:, 8:-1]

    velocity = motion[:, -1:, :, :]
    centers = torch.zeros_like(velocity)
    displacement = torch.zeros_like(velocity[:, :, :, 0])

    for t in range(T):
        displacement += velocity[:, :, :, t]
        centers[:, :, :, t] = displacement

    motion_inv = motion_inv + centers

    return motion_inv


def restore_world_space(motion, meanpose, stdpose, n_joints=15):
    B, C, T = motion.size()
    motion = motion.view(B, n_joints, C // n_joints, T)
    motion = normalize_motion_inv_torch(motion, meanpose, stdpose)
    motion = globalize_motion_torch(motion)
    return motion


def convert_to_learning_space(motion, meanpose, stdpose):
    B, J, D, T = motion.size()
    motion = localize_motion_torch(motion)
    motion = normalize_motion_torch(motion, meanpose, stdpose)
    motion = motion.view(B, J*D, T)
    return motion


# tensor operations for rotating and projecting 3d skeleton sequence

def get_body_basis(motion_3d):
    """
    Get the unit vectors for vector rectangular coordinates for given 3D motion
    :param motion_3d: 3D motion from 3D joints positions, shape (B, n_joints, 3, seq_len).
    :param angles: (K, 3), Rotation angles around each axis.
    :return: unit vectors for vector rectangular coordinates's , shape (B, 3, 3).
    """
    B = motion_3d.size(0)

    # 2 RightArm 5 LeftArm 9 RightUpLeg 12 LeftUpLeg
    horizontal = (motion_3d[:, 2] - motion_3d[:, 5] + motion_3d[:, 9] - motion_3d[:, 12]) / 2 # [B, 3, seq_len]
    horizontal = horizontal.mean(dim=-1) # [B, 3]
    horizontal = horizontal / horizontal.norm(dim=-1).unsqueeze(-1) # [B, 3]

    vector_z = torch.tensor([0., 0., 1.], device=motion_3d.device, dtype=motion_3d.dtype).unsqueeze(0).repeat(B, 1) # [B, 3]
    vector_y = torch.cross(horizontal, vector_z)   # [B, 3]
    vector_y = vector_y / vector_y.norm(dim=-1).unsqueeze(-1)
    vector_x = torch.cross(vector_y, vector_z)
    vectors = torch.stack([vector_x, vector_y, vector_z], dim=2)  # [B, 3, 3]

    vectors = vectors.detach()

    return vectors


def rotate_basis_euler(basis_vectors, angles):
    """
    Rotate vector rectangular coordinates from given angles.

    :param basis_vectors: [B, 3, 3]
    :param angles: [B, K, T, 3] Rotation angles around each axis.
    :return: [B, K, T, 3, 3]
    """
    B, K, T, _ = angles.size()

    cos, sin = torch.cos(angles), torch.sin(angles)
    cx, cy, cz = cos[:, :, :, 0], cos[:, :, :, 1], cos[:, :, :, 2]  # [B, K, T]
    sx, sy, sz = sin[:, :, :, 0], sin[:, :, :, 1], sin[:, :, :, 2]  # [B, K, T]

    x = basis_vectors[:, 0, :]  # [B, 3]
    o = torch.zeros_like(x[:, 0])  # [B]

    x_cpm_0 = torch.stack([o, -x[:, 2], x[:, 1]], dim=1)  # [B, 3]
    x_cpm_1 = torch.stack([x[:, 2], o, -x[:, 0]], dim=1)  # [B, 3]
    x_cpm_2 = torch.stack([-x[:, 1], x[:, 0], o], dim=1)  # [B, 3]
    x_cpm = torch.stack([x_cpm_0, x_cpm_1, x_cpm_2], dim=1)  # [B, 3, 3]
    x_cpm = x_cpm.unsqueeze(1).unsqueeze(2) # [B, 1, 1, 3, 3]

    x = x.unsqueeze(-1)  # [B, 3, 1]
    xx = torch.matmul(x, x.transpose(-1, -2)).unsqueeze(1).unsqueeze(2)  # [B, 1, 1, 3, 3]
    eye = torch.eye(n=3, dtype=basis_vectors.dtype, device=basis_vectors.device)
    eye = eye.unsqueeze(0).unsqueeze(0).unsqueeze(0) # [1, 1, 1, 3, 3]
    mat33_x = cx.unsqueeze(-1).unsqueeze(-1) * eye \
              + sx.unsqueeze(-1).unsqueeze(-1) * x_cpm \
              + (1. - cx).unsqueeze(-1).unsqueeze(-1) * xx  # [B, K, T, 3, 3]

    o = torch.zeros_like(cz)
    i = torch.ones_like(cz)
    mat33_z_0 = torch.stack([cz, sz, o], dim=3)  # [B, K, T, 3]
    mat33_z_1 = torch.stack([-sz, cz, o], dim=3)  # [B, K, T, 3]
    mat33_z_2 = torch.stack([o, o, i], dim=3)  # [B, K, T, 3]
    mat33_z = torch.stack([mat33_z_0, mat33_z_1, mat33_z_2], dim=3)  # [B, K, T, 3, 3]

    basis_vectors = basis_vectors.unsqueeze(1).unsqueeze(2)
    basis_vectors = basis_vectors @ mat33_x.transpose(-1, -2) @ mat33_z


    return basis_vectors


def change_of_basis(motion_3d, basis_vectors=None, project_2d=False):
    # motion_3d: (B, n_joints, 3, seq_len)
    # basis_vectors: (B, K, T, 3, 3)

    if basis_vectors is None:
        motion_proj = motion_3d[:, :, [0, 2], :]  # [B, n_joints, 2, seq_len]
    else:
        if project_2d: basis_vectors = basis_vectors[:, :, :, [0, 2], :]
        _, K, seq_len, _, _ = basis_vectors.size()
        motion_3d = motion_3d.unsqueeze(1).repeat(1, K, 1, 1, 1)
        motion_3d = motion_3d.permute([0, 1, 4, 3, 2]) # [B, K, J, 3, T] -> [B, K, T, 3, J]
        motion_proj = basis_vectors @ motion_3d  # [B, K, T, 2, 3] @ [B, K, T, 3, J] -> [B, K, T, 2, J]
        motion_proj = motion_proj.permute([0, 1, 4, 3, 2]) # [B, K, T, 3, J] -> [B, K, J, 3, T]

    return motion_proj


def rotate_and_maybe_project_world(X, angles=None, body_reference=True, project_2d=False):

    out_dim = 2 if project_2d else 3
    batch_size, n_joints, _, seq_len = X.size()

    if angles is not None:
        K = angles.size(1)
        basis_vectors = get_body_basis(X) if body_reference else \
            torch.eye(3, device=X.device).unsqueeze(0).repeat(batch_size, 1, 1)
        basis_vectors = rotate_basis_euler(basis_vectors, angles)
        X_trans = change_of_basis(X, basis_vectors, project_2d=project_2d)
        X_trans = X_trans.reshape(batch_size * K, n_joints, out_dim, seq_len)
    else:
        X_trans = change_of_basis(X, project_2d=project_2d)
        X_trans = X_trans.reshape(batch_size, n_joints, out_dim, seq_len)

    return X_trans



def rotate_and_maybe_project_learning(X, meanpose, stdpose, angles=None, body_reference=True, project_2d=False):
    batch_size, channels, seq_len = X.size()
    n_joints = channels // 3
    X = restore_world_space(X, meanpose, stdpose, n_joints)
    X = rotate_and_maybe_project_world(X, angles, body_reference, project_2d)
    X = convert_to_learning_space(X, meanpose, stdpose)
    return X