File size: 6,974 Bytes
9a70c5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
"""
This python script is used for direction detection.
We design the direction detection for 3 wav files types which has
4, 6 and 8 channels.
"""
import os
import numpy as np
from scipy.io import wavfile
from scipy.signal import butter, lfilter, freqz
from scipy import signal
import matplotlib
import matplotlib.pyplot as plt
offsetVector = []
"""
The funtion butter_highpass, butter_highpass_filter and calculateResidues are shared
Function offset is used for getAngle_for_eight
"""
def butter_highpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='high', analog=False)
return b, a
def butter_highpass_filter(data, cutoff, fs, order=5):
b, a = butter_highpass(cutoff, fs, order=order)
y = signal.filtfilt(b, a, data)
return y
def calculateResidues(Chan1, Chan2, fs):
S1 = butter_highpass_filter(Chan1, 100, fs, 7)
S2 = butter_highpass_filter(Chan2, 100, fs, 7)
index1 = -1
index2 = -1
index = -1
for i in range(len(S1)):
if S1[i] > 0.03:
index1 = i
break
for i in range(len(S2)):
if S2[i] > 0.03:
index2 = i
break
if (index1 < index2):
index = index1
else:
index = index2
residues = np.mean(np.square(S1[index:index + 401] - S2[index:index + 401]))
# offsetVector.append( index1 )
return residues
def do_iac(signal, pairs, fs):
# signal = data / 32767
residuesVector = []
for offset in [5, -5]:
# Computer overall cancellation error for this angle
iterator = 0
residues = 0
for mic1, mic2 in pairs:
Chan1 = signal[:, mic1]
Chan2 = signal[:, mic2]
S1 = Chan1 # butter_highpass_filter(Chan1 , 100 , fs , 7)
S2 = Chan2 # butter_highpass_filter(Chan2 , 100 , fs , 7)
index = -1
for i in range(len(S1)):
if (S1[i] > 0.003 and i > 40):
index = i
break
if (iterator == 0 or iterator == 4):
a = S1[index - 15:index + 15]
b = S2[index - 15:index + 15]
residues += np.square(np.subtract(a, b))
elif (iterator == 1 or iterator == 3):
a = S1[index - 15 + offset // 2:index + 15 + offset // 2]
b = S2[index - 15:index + 15]
residues += np.square(np.subtract(a, b))
elif (iterator == 2):
a = S1[index - 15 + offset:index + 15 + offset]
b = S2[index - 15:index + 15]
residues += np.square(np.subtract(a, b))
elif (iterator == 5 or iterator == 7):
a = S1[index - 15 - offset // 2:index + 15 - offset // 2]
b = S2[index - 15:index + 15]
residues += np.square(np.subtract(a, b))
elif (iterator == 6):
a = S1[index - 15 - offset:index + 15 - offset]
b = S2[index - 15:index + 15]
residues += np.square(np.subtract(a, b))
iterator += 1
residuesVector.append(np.mean(residues))
return residuesVector[0] < residuesVector[1]
def calculateResidues_eight(Chan1, Chan2, fs):
S1 = Chan1 # butter_highpass_filter(Chan1 , 100 , fs , 7 )
S2 = Chan2 # butter_highpass_filter(Chan2 , 100 , fs , 7 )
index1 = -1
index2 = -1
index = -1
for i in range(len(S1)):
if S1[i] > 0.01:
index1 = i
break
for i in range(len(S2)):
if S2[i] > 0.01:
index2 = i
break
if (index1 < index2):
index = index1
else:
index = index2
residues = np.mean(np.square(S1[index:index + 401] - S2[index:index + 401]))
return residues
def getAngle_for_eight(data, fs):
signal = data / 32767
for i in range(8):
column = butter_highpass_filter(signal[:, i], 100, fs, 7)
signal[:, i] = column
pairs = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 0)]
smallestResidues = 100
closestPair = (0, 0)
offsetIndex = -1
for iter in range(8):
chan1 = signal[:, pairs[iter][0]]
chan2 = signal[:, pairs[iter][1]]
residues = calculateResidues_eight(chan1, chan2, fs)
if (residues < smallestResidues):
smallestResidues = residues
closestPair = (pairs[iter])
offsetIndex = iter
if do_iac(signal, pairs, fs) == True:
d1 = abs(offsetIndex - 4)
d2 = abs((offsetIndex + 4) % 8 - 4)
if (d1 < d2):
pass
else:
closestPair = pairs[(offsetIndex + 4) % 8]
mics = (closestPair[0] + 1, closestPair[1] + 1)
return mics
def getAngle_for_six(data, fs):
signal = data / 32767
pairs = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 0)]
smallestResidues = 100
closestPair = (0, 0)
offsetIndex = -1
for iter in range(6):
chan1 = signal[:, pairs[iter][0]]
chan2 = signal[:, pairs[iter][1]]
residues = calculateResidues(chan1, chan2, fs)
if (residues < smallestResidues):
smallestResidues = residues
closestPair = (pairs[iter])
offsetIndex = iter
""" if (offsetVector[offsetIndex] > offsetVector[(offsetIndex+3)%6] ):
closestPair = pairs[(offsetIndex+3)%6] """
mics = (closestPair[0] + 1, closestPair[1] + 1)
# print(offsetVector)
return mics
def getAngle_for_four(data, fs):
signal = data / 32767
pairs = [(0, 1), (1, 2), (2, 3), (3, 0)]
smallestResidues = 100
closestPair = (0, 0)
offsetIndex = -1
for iter in range(4):
chan1 = signal[:, pairs[iter][0]]
chan2 = signal[:, pairs[iter][1]]
residues = calculateResidues(chan1, chan2, fs)
if (residues < smallestResidues):
smallestResidues = residues
closestPair = (pairs[iter])
offsetIndex = iter
""" if (offsetVector[offsetIndex] > offsetVector[(offsetIndex+3)%6] ):
closestPair = pairs[(offsetIndex+3)%6] """
mics = (closestPair[0] + 1, closestPair[1] + 1)
# print(offsetVector)
return mics
def getDirection_Pair(closestPair, num_chan):
"""
:param closestPair: two closet pair, such as (0,1)
:param num_chan: channel numbers, such as 8
:return: in above parameters, should be [7 0 1 2]
"""
pairs = [0, 0, 0, 0]
pairs[1] = closestPair[0] - 1
pairs[2] = closestPair[1] - 1
pairs[0] = (pairs[1] - int(num_chan/2)) % num_chan
pairs[3] = (pairs[2] + int(num_chan/2)) % num_chan
return pairs
|