File size: 6,974 Bytes
9a70c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""

This python script is used for direction detection.

We design the direction detection for 3 wav files types which has

4, 6 and 8 channels.

"""
import os
import numpy as np
from scipy.io import wavfile
from scipy.signal import butter, lfilter, freqz
from scipy import signal
import matplotlib
import matplotlib.pyplot as plt

offsetVector = []

"""

The funtion butter_highpass, butter_highpass_filter and calculateResidues are shared

Function offset is used for getAngle_for_eight

"""
def butter_highpass(cutoff, fs, order=5):
    nyq = 0.5 * fs
    normal_cutoff = cutoff / nyq
    b, a = signal.butter(order, normal_cutoff, btype='high', analog=False)
    return b, a


def butter_highpass_filter(data, cutoff, fs, order=5):
    b, a = butter_highpass(cutoff, fs, order=order)
    y = signal.filtfilt(b, a, data)
    return y


def calculateResidues(Chan1, Chan2, fs):
    S1 = butter_highpass_filter(Chan1, 100, fs, 7)
    S2 = butter_highpass_filter(Chan2, 100, fs, 7)

    index1 = -1
    index2 = -1
    index = -1

    for i in range(len(S1)):
        if S1[i] > 0.03:
            index1 = i
            break

    for i in range(len(S2)):
        if S2[i] > 0.03:
            index2 = i
            break

    if (index1 < index2):
        index = index1
    else:
        index = index2

    residues = np.mean(np.square(S1[index:index + 401] - S2[index:index + 401]))
    # offsetVector.append( index1 )

    return residues


def do_iac(signal, pairs, fs):
    # signal = data / 32767
    residuesVector = []

    for offset in [5, -5]:

        # Computer overall cancellation error for this angle
        iterator = 0
        residues = 0
        for mic1, mic2 in pairs:

            Chan1 = signal[:, mic1]
            Chan2 = signal[:, mic2]

            S1 = Chan1  # butter_highpass_filter(Chan1 , 100 , fs , 7)
            S2 = Chan2  # butter_highpass_filter(Chan2 , 100 , fs , 7)

            index = -1
            for i in range(len(S1)):
                if (S1[i] > 0.003 and i > 40):
                    index = i
                    break

            if (iterator == 0 or iterator == 4):
                a = S1[index - 15:index + 15]
                b = S2[index - 15:index + 15]
                residues += np.square(np.subtract(a, b))
            elif (iterator == 1 or iterator == 3):
                a = S1[index - 15 + offset // 2:index + 15 + offset // 2]
                b = S2[index - 15:index + 15]
                residues += np.square(np.subtract(a, b))
            elif (iterator == 2):
                a = S1[index - 15 + offset:index + 15 + offset]
                b = S2[index - 15:index + 15]
                residues += np.square(np.subtract(a, b))
            elif (iterator == 5 or iterator == 7):
                a = S1[index - 15 - offset // 2:index + 15 - offset // 2]
                b = S2[index - 15:index + 15]
                residues += np.square(np.subtract(a, b))
            elif (iterator == 6):
                a = S1[index - 15 - offset:index + 15 - offset]
                b = S2[index - 15:index + 15]
                residues += np.square(np.subtract(a, b))

            iterator += 1

        residuesVector.append(np.mean(residues))

    return residuesVector[0] < residuesVector[1]


def calculateResidues_eight(Chan1, Chan2, fs):
    S1 = Chan1  # butter_highpass_filter(Chan1 , 100 , fs , 7 )
    S2 = Chan2  # butter_highpass_filter(Chan2 , 100 , fs , 7 )

    index1 = -1
    index2 = -1
    index = -1

    for i in range(len(S1)):
        if S1[i] > 0.01:
            index1 = i
            break

    for i in range(len(S2)):
        if S2[i] > 0.01:
            index2 = i
            break

    if (index1 < index2):
        index = index1
    else:
        index = index2

    residues = np.mean(np.square(S1[index:index + 401] - S2[index:index + 401]))

    return residues


def getAngle_for_eight(data, fs):
    signal = data / 32767
    for i in range(8):
        column = butter_highpass_filter(signal[:, i], 100, fs, 7)
        signal[:, i] = column

    pairs = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 0)]
    smallestResidues = 100
    closestPair = (0, 0)
    offsetIndex = -1

    for iter in range(8):

        chan1 = signal[:, pairs[iter][0]]
        chan2 = signal[:, pairs[iter][1]]

        residues = calculateResidues_eight(chan1, chan2, fs)

        if (residues < smallestResidues):
            smallestResidues = residues
            closestPair = (pairs[iter])
            offsetIndex = iter

    if do_iac(signal, pairs, fs) == True:
        d1 = abs(offsetIndex - 4)
        d2 = abs((offsetIndex + 4) % 8 - 4)
        if (d1 < d2):
            pass
        else:
            closestPair = pairs[(offsetIndex + 4) % 8]

    mics = (closestPair[0] + 1, closestPair[1] + 1)

    return mics


def getAngle_for_six(data, fs):
    signal = data / 32767
    pairs = [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 0)]
    smallestResidues = 100
    closestPair = (0, 0)
    offsetIndex = -1

    for iter in range(6):

        chan1 = signal[:, pairs[iter][0]]
        chan2 = signal[:, pairs[iter][1]]

        residues = calculateResidues(chan1, chan2, fs)

        if (residues < smallestResidues):
            smallestResidues = residues
            closestPair = (pairs[iter])
            offsetIndex = iter

    """ if (offsetVector[offsetIndex] > offsetVector[(offsetIndex+3)%6]   ):

        closestPair = pairs[(offsetIndex+3)%6] """

    mics = (closestPair[0] + 1, closestPair[1] + 1)
    # print(offsetVector)

    return mics


def getAngle_for_four(data, fs):
    signal = data / 32767
    pairs = [(0, 1), (1, 2), (2, 3), (3, 0)]
    smallestResidues = 100
    closestPair = (0, 0)
    offsetIndex = -1

    for iter in range(4):

        chan1 = signal[:, pairs[iter][0]]
        chan2 = signal[:, pairs[iter][1]]

        residues = calculateResidues(chan1, chan2, fs)

        if (residues < smallestResidues):
            smallestResidues = residues
            closestPair = (pairs[iter])
            offsetIndex = iter

    """ if (offsetVector[offsetIndex] > offsetVector[(offsetIndex+3)%6]   ):

        closestPair = pairs[(offsetIndex+3)%6] """

    mics = (closestPair[0] + 1, closestPair[1] + 1)
    # print(offsetVector)

    return mics


def getDirection_Pair(closestPair, num_chan):
    """

    :param closestPair: two closet pair, such as (0,1)

    :param num_chan: channel numbers, such as 8

    :return: in above parameters, should be [7 0 1 2]

    """
    pairs = [0, 0, 0, 0]
    pairs[1] = closestPair[0] - 1
    pairs[2] = closestPair[1] - 1
    pairs[0] = (pairs[1] - int(num_chan/2)) % num_chan
    pairs[3] = (pairs[2] + int(num_chan/2)) % num_chan

    return pairs