File size: 6,417 Bytes
9a70c5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
#code
#coding=UTF-8
# ! -*- coding: utf-8 -*-
from __future__ import print_function
#%% 导入必要的包
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.losses import binary_crossentropy
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import roc_curve
from scipy.interpolate import interp1d
from scipy.optimize import brentq
import matplotlib.pyplot as plt
from scipy.io.wavfile import read
from sklearn.preprocessing import normalize
from generate_array_feature import mald_feature, get_filelist
import os
import threading
import tkinter as tk
from tkinter import filedialog
from PIL import Image,ImageTk
from tkinter.messagebox import *
from tkinter import scrolledtext
top1=None
top2=None
top4=None
top5=None
top6=None
top7=None
img_open=None
img=None
v1=None
v2=None
ll=0
s2=''
s1=''
top3=None
t2=None
s=''
f1="fg.txt"
f2="fg.txt"
v=None
top=None
v={}
d1={}
d2={}
message=""
ermsg=""
picn=0
arg = []
class MyThread(threading.Thread):
def __init__(self, func, *args):#多线程启动,防止界面卡死
super().__init__()
self.func = func
self.args = args
self.setDaemon(True)
self.start()
def run(self):
self.func(*self.args)
def chf(tt1):#选择音频文件
global f1
f1=filedialog.askopenfilename()
showinfo("Open File", "Open a new File.")
tt1.delete(0.0, tk.END)
tt1.insert(0.0, f1)
def info():
pp='语言接口安全'
showinfo('Information',pp)
def build_model():
# %% 定义分类器model
# 这一个代码块是用来定义model的。
# 定义model的batch_size, feature长度之类的
batch_size = 10
feature_len = 110
loss_function = binary_crossentropy
no_epochs = 150
optimizer = Adam()
verbosity = 1
model = Sequential()
model.add(Dense(64, input_dim=feature_len, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(16, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss=loss_function, optimizer=optimizer, metrics=['accuracy'])
# 至此,分类器模型的基本参数已经设置完毕,接下来可以从hdf5文件中导入预先训练好的model
model.load_weights("model.hdf5")
# 从train2.hdf5导入model。
# train2.hdf5 是从 data2.npy训练来的。
# 这样与 data1.npy数据不会有重叠
return model
def show_data(f1):
file_path = f1
print(f1)
rate, data = read(file_path)
plt.plot(data, label='Voice Signal')
plt.show()
def show_feature(f1):
file_path = f1
file_name = file_path.split("\\")[-1]
# define the normal or attack in variable cur_y
if 'normal' in file_name:
cur_y = 1 # normal case
elif 'attack' in file_name:
cur_y = 0
# split the file name
# read the data
rate, data = read(file_path)
X = mald_feature(rate, data)
# 从wav 文件提取特征的函数是 generate_array_feature.py
# X 是特征,特征的维度是110维
y = cur_y
# y是标签,1代表正常样本,0代表攻击样本
if y == 1: # 正常情况
title = 'the sample is normal'
else:
title = 'the sample is attack'
plt.plot(X)
plt.title(title)
plt.show()
def detect(f1, model):
file_path = f1
file_name = file_path.split("\\")[-1]
# define the normal or attack in variable cur_y
if 'normal' in file_name:
cur_y = 1 # normal case
elif 'attack' in file_name:
cur_y = 0
# split the file name
# read the data
rate, data = read(file_path)
X = []
X += [list(mald_feature(rate, data))]
X += [list(mald_feature(rate, data))]
# 加2次,因为model需要一个二维的
X = np.asarray(X)
# 从wav 文件提取特征的函数是 generate_array_feature.py
# X 是特征,特征的维度是110维
y = cur_y
# y是标签,1代表正常样本,0代表攻击样本
y_pred = np.round(model.predict(X))
# 开始预测
y_pred = y_pred[0]
if y == 1: # 正常情况
if y_pred == y:
print("成功预测") # 成功预测
print("车辆运行")
title = "指令正常,预测正确,车辆运行"
print('--------------')
print(title)
else:
print("失败预测") # 失败预测
print("车辆静止")
title = "指令正常,预测失败,车辆静止"
print('--------------')
print(title)
else: # 异常情况,决策是相反的
if y_pred == y:
print("成功预测") # 成功预测
print("车辆静止")
title = "指令异常,预测正确,车辆静止"
print('--------------')
print(title)
else:
print("失败预测") # 失败预测
print("车辆运行")
title = "指令异常,预测失败,车辆运行"
print('--------------')
print(title)
ans=""
root=tk.Tk(className='语音接口认证系统')
#root.iconbitmap('bf.ico')
root.attributes("-alpha",0.9)
tk.Label(root,height=10,width=5).grid(row=0,column=0)
fra=tk.Frame(root,width=55,height=100)
fra.grid(row=0,column=1)
tk.Label(root,height=10,width=5).grid(row=0,column=2)
tk.Label(fra,text='',height=1,width=10).grid(row=0,column=0)
tt1=tk.Text(fra,height=2,width=30)
tt1.grid(row=1,column=0)
tk.Button(fra, text='请先选择语音数据', command=lambda: chf(tt1)).grid(row=1,column=1)
model = build_model()
train=tk.Button(fra,text='显示音频内容',font=('楷体,bold'),borderwidth=3,command=lambda :MyThread(show_data,f1)) #完成
train.grid(row=3,column=0)
train=tk.Button(fra,text='显示音频的特征',font=('楷体,bold'),borderwidth=3,command=lambda :MyThread(show_feature,f1)) #完成
train.grid(row=5,column=0)
train=tk.Button(fra,text='显示检测结果',font=('楷体,bold'),borderwidth=3,command=lambda :MyThread(detect,f1,model)) #完成
train.grid(row=7,column=0)
tk.mainloop()
|