File size: 6,003 Bytes
9a70c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
"""
This task is running a cross validation.
We start from the two-fold validation.
"""
#%% Import necessary packages and EER function
# test the numpy
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.losses import binary_crossentropy
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint
import tensorflow as tf
from sklearn.metrics import roc_curve
from scipy.interpolate import interp1d
from scipy.optimize import brentq
import os
import random

def eer(x_test, y_test, model):
    preds = model.predict(x_test)
    fpr, tpr, thresholds = roc_curve(y_test, preds)
    return brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)


#%%
data = np.load("/home/fazhong/Github/czx/data.npy", allow_pickle=True)
labels = np.load("/home/fazhong/Github/czx/labels.npy", allow_pickle=True)


data_all = []
data = data.tolist()
#print(data[0])
labels = labels.tolist()
for i in range(len(data)):
    tmp = []
    tmp.append(np.array(data[i][0])) 
    tmp.extend([labels[i][0]])
    tmp.extend([labels[i][1]])
    tmp.extend([labels[i][2]])
    data_all.append(tmp)
random.shuffle(data_all)
data = data_all
# ?
#np.random.shuffle(data)
batch_size = 10
feature_len = 110
loss_function = binary_crossentropy
## batch
no_epochs = 150
optimizer = Adam()
verbosity = 1
model = Sequential()
model.add(Dense(64, input_dim=feature_len, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(16, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss=loss_function, optimizer=optimizer, metrics=['accuracy'])

#%% training and save the hdf5 file
data_train = data[:int(0.5*(len(data)))]
print(len(data_train))
X1 = np.asarray([x[0] for x in data_train])
print(X1.shape)
y1 = np.asarray([x[1] for x in data_train])
print(y1.shape)
data_test = data[int(0.5*(len(data))):]
X2 = np.asarray([x[0] for x in data_test])
y2 = np.asarray([x[1] for x in data_test])
checkpointer = ModelCheckpoint(filepath="./data-task0/train1.keras",
                               verbose=verbosity, save_best_only=True)
print('-' * 30)
print('Training for whole data set')
history = model.fit(X1, y1,
                    # validation_data=(x[test], y[test]),
                    validation_split=0.1,
                    batch_size=batch_size,
                    epochs=no_epochs,
                    verbose=verbosity,
                    callbacks=[checkpointer, tf.keras.callbacks.EarlyStopping(monitor='loss', patience=7)]
                    )

## train for X2
checkpointer = ModelCheckpoint(filepath="./data-task0/train2.keras",
                               verbose=verbosity, save_best_only=True)
print('-' * 30)
print('Training for whole data set')
history = model.fit(X2, y2,
                    # validation_data=(x[test], y[test]),
                    validation_split=0.1,
                    batch_size=batch_size,
                    epochs=no_epochs,
                    verbose=verbosity,
                    callbacks=[checkpointer, tf.keras.callbacks.EarlyStopping(monitor='loss', patience=7)]
                    )


#%% calculate the final result.
#data_train = np.load("./main_task/data-task0/data1.npy", allow_pickle=True)
X1 = np.asarray([x[0] for x in data_train])
y1 = np.asarray([x[1] for x in data_train])
#data_test = np.load("./main_task/data-task0/data2.npy", allow_pickle=True)
X2 = np.asarray([x[0] for x in data_test])
y2 = np.asarray([x[1] for x in data_test])


model.load_weights("./data-task0/train1.keras")
scores = model.evaluate(X2, y2)
y_pred2 = model.predict(X2)
print(y_pred2.shape)

model.load_weights("./data-task0/train2.keras")
scores = model.evaluate(X1, y1)
y_pred1 = model.predict(X1)

y_pred = np.concatenate((y_pred1, y_pred2))
y_pred = y_pred.reshape((len(y_pred), 1))
y_label = np.concatenate((y1, y2))
y_label = y_label.reshape((len(y_label), 1))
for i in range(len(y_label)):
    if(y_pred[i]>0.5):y_pred[i]=1
    else:y_pred[i] = 0
ACCU = np.sum((y_pred == y_label)) / len(y_label)
print("ACCU is " + str(100 * ACCU))
fpr, tpr, thresholds = roc_curve(y_label, y_pred)
EER = brentq(lambda x: 1. - x - interp1d(fpr, tpr)(x), 0., 1.)
print(EER)


# #%% calculate the final result.
# num_all = np.zeros((20, 1))
# num_success = np.zeros((20, 1))
# for user_num in range(1, 21, 1):
#     # testing the data on the train1.hdf5
#     model.load_weights("./data-task0/train1.keras")
#     print("user number is " + str(user_num))
#     X_test = np.asarray([x[0] for x in data_test if (x[5] == user_num and x[1] == 0)])
#     y_test = np.asarray([x[1] for x in data_test if (x[5] == user_num and x[1] == 0)])
#     scores = model.evaluate(X_test, y_test)
#     num_all[user_num - 1] += len(y_test)
#     num_success[user_num - 1] += np.round(len(y_test)*scores[1])
# for user_num in range(1, 21, 1):
#     # testing the data on the train2.hdf5
#     model.load_weights("./data-task0/train2.keras")
#     print("user number is " + str(user_num))
#     X_test = np.asarray([x[0] for x in data_train if (x[5] == user_num and x[1] == 0)])
#     y_test = np.asarray([x[1] for x in data_train if (x[5] == user_num and x[1] == 0)])
#     scores = model.evaluate(X_test, y_test)
#     num_all[user_num - 1] += len(y_test)
#     num_success[user_num - 1] += np.round(len(y_test)*scores[1])

# #%% show the results
# for user_num in range(1, 21, 1):
#     print("user number is " + str(user_num))
#     print("[=========]  total number is " + str(int(num_all[user_num - 1])) + ", and wrong detect " + str(int(num_all[user_num - 1] - num_success[user_num - 1]))
#           + " samples, rate is " + str(np.round(num_success[user_num - 1] / num_all[user_num - 1], 4)))
# print("total number is " + str(int(np.sum(num_all))) + ", and detect " + str(int(np.sum(num_all) - np.sum(num_success)))
#       + " samples, rate is " + str((np.sum(num_success) / np.sum(num_all))))