File size: 11,539 Bytes
9a70c5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.losses import binary_crossentropy
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.models import load_model
from tensorflow.keras.callbacks import ModelCheckpoint
from tensorflow.keras.utils import to_categorical
import tensorflow as tf
from sklearn.metrics import roc_curve
from scipy.interpolate import interp1d
from scipy.optimize import brentq
import os
import random
import spacy
import matplotlib.pyplot as plt
# == Part 1 - Read data ==
data = np.load("/home/fazhong/Github/czx/data.npy", allow_pickle=True)
labels = np.load("/home/fazhong/Github/czx/labels.npy", allow_pickle=True)
texts = np.load("/home/fazhong/Github/czx/texts.npy", allow_pickle=True)
commands = [
"OK Google.",
"Turn on Bluetooth.",
"Record a video.",
"Take a photo.",
"Open music player.",
"Set an alarm for 6:30 am.",
"Remind me to buy coffee at 7 am.",
"What is my schedule for tomorrow?",
"Square root of 2105?",
"Open browser.",
"Decrease volume.",
"Turn on flashlight.",
"Set the volume to full.",
"Mute the volume.",
"What's the definition of transmit?",
"Call Pizza Hut.",
"Call the nearest computer shop.",
"Show me my messages.",
"Translate please give me directions to Chinese.",
"How do you say good night in Japanese?"
]
commands_basic = [
0,# "OK Google.",
1,#"Turn on Bluetooth.",
5,#"Set an alarm for 6:30 am.",
10,#"Decrease volume.",
11,#"Turn on flashlight.",
12,#"Set the volume to full.",
13,#"Mute the volume.",
]
commands_daily = [
2,#"Record a video.",
3,#"Take a photo.",
4,#"Open music player.",
6,#"Remind me to buy coffee at 7 am.",
15,#"Call Pizza Hut.",
]
commands_work = [
7,#"What is my schedule for tomorrow?",
8,#"Square root of 2105?",
9,#"Open browser.",
14,#"What's the definition of transmit?",
16,#"Call the nearest computer shop.",
17,#"Show me my messages.",
18,#"Translate please give me directions to Chinese.",
19,#"How do you say good night in Japanese?"
]
def rule_judge(type,time,location):
if type in commands_basic:
if time == 0:
return False
else:
return True
elif type in commands_daily:
if time == 2:
return True
else:
return False
elif type in commands_work:
if time == 1 and location ==1:
return True
else:
return False
# 0 - sleep time / 1 - work time / 2 - daily time
times_label = [0,1,2]
# 0 - home / 1 - factory
location_label = [0,1]
data_all = []
data = data.tolist()
labels = labels.tolist()
texts = texts.tolist()
acc_num = 0
all_num = len(data)
atk_list = []
atk_err = []
name_err = []
type_err = []
gt_label = []
pre_label = []
name_err_num = [0,0,0,0]
name_acc_num = [0,0,0,0]
command_err_num = []
command_acc_num = []
for i in range(20):
command_err_num.append(0)
command_acc_num.append(0)
for i in range(len(data)):
tmp = []
tmp.append(np.array(data[i][0]))
tmp.extend([labels[i][0]])
tmp.extend([labels[i][1]])
tmp.extend([labels[i][2]])
data_all.append(tmp)
data = data_all
time_labels = []
location_labels = []
for i in range(len(data)):
time_labels.append(random.randint(0,2))
location_labels.append(random.randint(0,1))
rule_err = []
for i in range(len(data)):
if not rule_judge(data[i][2],time_labels[i],location_labels[i]):
rule_err.append(i)
# == Part 2 - Judge of Human ==
model = load_model('/home/fazhong/Github/czx/data-task0_1/train1.keras')
X = np.asarray([x[0] for x in data])
y = np.asarray([x[1] for x in data])
type = np.asarray([x[3] for x in data])
y_pred = model.predict(X)
y_pred = y_pred.reshape((len(y_pred), 1))
y = y.reshape((len(y), 1))
for i in range(len(y)):
if(y_pred[i]>0.5):y_pred[i]=1
else:
y_pred[i] = 0
atk_list.append(i)
if(y_pred[i]!=y[i]):
atk_err.append(i)
ACCU = np.sum((y_pred == y)) / len(y)
print(len(y))
print("ACCU is " + str(100 * ACCU))
# == Part 3 - Judge of Name ==
model = load_model('/home/fazhong/Github/czx/data-task0/train1.keras')
y_name = np.asarray([x[2] for x in data])
y_pred = model.predict(X)
y_pred_classes = np.argmax(y_pred,axis=1)
ACCU = np.sum((y_pred_classes == y_name)) / len(y_name)
for i in range(len(y_name)):
if(y_pred_classes[i]!=y_name[i]):
name_err.append(i)
print("ACCU is " + str(100 * ACCU))
# Part 4 - Transcribe and Judge of Reason
# PS! Attack的文本不需要跑分类
nlp = spacy.load('en_core_web_md')
def classify_key(command):
if 'ok google' in command:
return 1
elif 'okay' in command:
return 1
elif 'bluetooth' in command:
return 2
elif 'record' in command and 'video' in command:
return 3
elif 'take' in command and 'photo' in command:
return 4
elif 'music' in command:
return 5
elif 'alarm' in command:
return 6
elif 'remind' in command and 'coffee' in command:
return 7
elif 'am' in command :
return 7
elif 'schedule' in command or 'tomorrow' in command:
return 8
elif 'square root' in command:
return 9
elif 'open browser' in command:
return 10
elif 'decrease volume' in command:
return 11
elif 'flashlight' in command and 'on' in command:
return 12
elif 'hello freshlight' in command.lower():
return 12
elif 'turn on' in command:
return 12
elif 'volume' in command and 'full' in command:
return 13
elif 'mute' in command :
return 14
elif 'move' in command :
return 14
elif 'more' in command :
return 14
elif 'motor' in command :
return 14
elif 'mood' in command :
return 14
elif 'most' in command :
return 14
elif 'what' in command :
return 14
elif 'with' in command :
return 14
elif 'milk' in command :
return 14
elif 'use' in command :
return 14
elif 'definition of' in command:
return 15
elif 'call' in command and 'pizza hut' in command.lower():
return 16
elif 'copies are' in command.lower() or 'call a piece of heart' in command.lower() or 'copies of' in command.lower():
return 16
elif 'peace' in command.lower():
return 16
elif 'heart' in command.lower():
return 16
elif 'pisa' in command.lower():
return 16
elif 'piece' in command.lower():
return 16
elif 'hard' in command.lower():
return 16
elif 'call' in command and 'computer shop' in command.lower():
return 17
elif 'message' in command :
return 18
elif 'translate' in command:
return 19
elif 'good night' in command and 'in japanese' in command:
return 20
else:
return None # or some default value if command is not recognized
correct_count = 0
total_count = 0
category_number = 0
total_normal = 0
normal_texts = []
normal_labels = []
All_Normal_names = []
# Test of rule module
test_flag = True
atk_org_list = []
for i in range(len(texts)):
if test_flag:
normal_texts.append(texts[i])
All_Normal_names.append(y_name[i])
normal_labels.append(type[i])
if y[i] == 0:
atk_org_list.append(i)
else:
if y[i] == 1:
normal_texts.append(texts[i])
All_Normal_names.append(y_name[i])
normal_labels.append(type[i])
print(len(atk_org_list))
# for text in texts:
# if texts.index(text) in atk_list:
# print(texts.index(text))
# continue
# else:
# normal_texts.append(text)
weird_name = []
weird_command = []
# for i in range(len(data)):
# if not rule_judge(data[i][2],time_labels[i],location_labels[i]):
# rule_err.append(i)
for i in range(len(normal_texts)):
text = normal_texts[i]
category_number = normal_labels[i]
# print(text)
# print(category_number)
result_pre = classify_key(text.replace('.', '').replace(',', '').lower().strip())
# IF rule - judge
# if not rule_judge(category_number-1,time_labels[i],location_labels[i]):
# command_err_num[category_number-1]+=1
# name_err_num[All_Normal_names[i]]+=1
# continue
if i in atk_org_list:
command_err_num[category_number-1]+=1
name_err_num[All_Normal_names[i]]+=1
continue
if result_pre is not None:
if result_pre == category_number:
correct_count += 1
command_acc_num[category_number-1]+=1
name_acc_num[All_Normal_names[i]]+=1
continue
input_doc = nlp(text.replace('.', '').replace(',', '').lower().strip())
similarities = [(command, input_doc.similarity(nlp(command))) for command in commands]
best_match = max(similarities, key=lambda item: item[1])
best_match_index = commands.index(best_match[0]) + 1
if best_match_index == category_number:
correct_count += 1
command_acc_num[category_number-1]+=1
name_acc_num[All_Normal_names[i]]+=1
else:
# print(text.replace('.', '').replace(',', '').lower().strip())
# if category_number==16:
# print(input_doc,commands[category_number-1],commands[best_match_index-1])
command_err_num[category_number-1]+=1
name_err_num[All_Normal_names[i]]+=1
# if 'thank' in str(input_doc):
# pass
# # print('?')
# # print(texts.index(text))
# # print(data[texts.index(text)])
# weird_name.append(y_name[texts.index(text)])
# weird_command.append(type[texts.index(text)])
type_err.append(texts.index(text))
# 计算正确率
accuracy = correct_count / len(normal_texts)
print(f"Accuracy: {accuracy:.2f}")
# Part 5 - Results
atk_set = set(atk_err)
name_set = set(name_err)
type_set = set(type_err)
#rule_set = set(rule_err)
err_list = list(atk_set | name_set | type_set)
print(len(err_list))
# print(weird_name)
print(name_err_num)
print(name_acc_num)
print(command_err_num)
print(command_acc_num)
# print(weird_command)
#print(atk_list)
# print(len(atk_list))
# print(all_num)
# print(atk_err)
# print(name_err)
# print(type_err)
# print(type_set)
# print(err_list)
# # 设置柱状图的位置编号
# x = np.arange(len(name_err_num))
# # 画柱状图
# plt.bar(x - 0.2, name_acc_num, width=0.4, label='Correct', color='green')
# plt.bar(x + 0.2, name_err_num, width=0.4, label='Error', color='red')
# # 添加标题和标签
# plt.xlabel('Names')
# plt.ylabel('Counts')
# plt.title('Accuracy and Errors by Name')
# plt.xticks(x, ['User1', 'User2', 'User3', 'User4']) # 假设有四个名字
# plt.legend()
# #plt.savefig('/home/fazhong/Github/czx/user.png')
# # 显示图形
# plt.close()
# # 设置柱状图的位置编号
# x = np.arange(len(command_err_num))
# # 画柱状图
# plt.bar(x - 0.2, command_acc_num, width=0.4, label='Correct', color='blue')
# plt.bar(x + 0.2, command_err_num, width=0.4, label='Error', color='orange')
# # 添加标题和标签
# plt.xlabel('Commands')
# plt.ylabel('Counts')
# plt.title('Accuracy and Errors by Command')
# plt.xticks(x, [i for i in range(20)]) # 假设有六个命令
# plt.legend()
# # 显示图形
# #plt.savefig('/home/fazhong/Github/czx/com.png') |