WAV2COM / src /main_functions.py
Fazhong Liu
init
9a70c5d
raw
history blame
5.24 kB
"""
这是带注释的,我用中文写了
"""
#%% 导入必要的包
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout
from tensorflow.keras.losses import binary_crossentropy
from tensorflow.keras.optimizers import Adam
from sklearn.metrics import roc_curve
from scipy.interpolate import interp1d
from scipy.optimize import brentq
import matplotlib.pyplot as plt
from scipy.io.wavfile import read
from sklearn.preprocessing import normalize
from generate_array_feature import mald_feature, get_filelist
import time
#%% 定义分类器model
# 这一个代码块是用来定义model的。
# 定义model的batch_size, feature长度之类的
batch_size = 10
feature_len = 110
loss_function = binary_crossentropy
no_epochs = 150
optimizer = Adam()
verbosity = 1
model = Sequential()
model.add(Dense(64, input_dim=feature_len, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(16, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss=loss_function, optimizer=optimizer, metrics=['accuracy'])
# 至此,分类器模型的基本参数已经设置完毕,接下来可以从hdf5文件中导入预先训练好的model
model.load_weights(r"/home/fazhong/Github/czx/model.hdf5")
# 从train2.hdf5导入model。
# train2.hdf5 是从 data2.npy训练来的。
# 这样与 data1.npy数据不会有重叠
#%% 导入音频
path_wave = r"/home/fazhong/Github/czx/voice"
print("Loading data ...")
name_all = get_filelist(path_wave)
voice = []
# voice 是从 一堆 wav 音频文件中提取的波形
X = [] # X is the feature ~ data[0]
y = [] # y is the normal (1) or attack (0) ~ data[1]
for file_path in name_all:
file_name = file_path.split("\\")[-1]
# define the normal or attack in variable cur_y
if 'normal' in file_name:
cur_y = 1 # normal case
elif 'attack' in file_name:
cur_y = 0
# split the file name
# read the data
rate, data = read(file_path)
voice += [list(data)]
X += [list(mald_feature(rate, data))]
print(list(mald_feature(rate, data)))
# 从wav 文件提取特征的函数是 generate_array_feature.py
# X 是特征,特征的维度是110维
y += [cur_y]
# y是标签,1代表正常样本,0代表攻击样本
# normalization
norm_X = normalize(X, axis=0, norm='max')
# X_y = [(norm_X[i], y[i]) for i in range(len(norm_X))]
# # print(len(X_y))
# # for i in X_y: print(i[1])
# X_y = np.asarray(X_y)
X = np.asarray(norm_X)
y = np.asarray(y)
# X = np.asarray([x[0] for x in X_y])
# y = np.asarray([x[1] for x in X_y])
#%% 画出特征来
index1 = [5] # 选第2121个元素
x1 = X[index1]
y1 = y[index1] # 1,代表normal
plt.plot(x1.T, label='normal')
index2 = [1] # 选择第10个元素
x2 = X[index2]
y2 = y[index2] # 0, 代表attack
plt.plot(x2.T, label='attack')
plt.legend()
plt.show()
# 可以明显看出 normal 与 attack 的区别,这也是我们分类的基础
#%% 开始预测
scores = model.evaluate(X, y) # 这是一个总体的预测
y_pred = np.round(model.predict(X)) # 这里会给出一个预测的结论
index1 = 8 # 8 是一个正常样本
index3 = [1, 3, 5, 7, 9] # 选一些样本,等wav 文件到了,输入就直接是wav
for i in index3:
print('Starting detection:')
plt.plot(voice[i], label='Voice Signal')
plt.show()
time.sleep(2)
if y[i] == 1: # 正常情况
print('the ' + str(i) + ' sample is normal')
title = 'the ' + str(i) + ' sample is normal'
plt.subplot(1, 2, 1)
plt.plot(X[index1])
plt.subplot(1, 2, 2)
plt.plot(X[i], label='New')
plt.title(title)
plt.show()
time.sleep(1)
if y_pred[i] == y[i]:
print("Successfully Detect") # 成功预测
print("Run the car")
title = "Successfully Detect, " + "Run the car"
plt.title(title)
plt.show()
else:
print("Detection is false.") # 失败预测
print("Don't run the car")
title = "Detection is false, " + "Don't run the car"
plt.title(title)
plt.show()
else: # 异常情况,决策是相反的
print('the ' + str(i) + ' sample is attack')
title = 'the ' + str(i) + ' sample is attack'
plt.subplot(1, 2, 1)
plt.plot(X[index1], label='Normal')
plt.subplot(1, 2, 2)
plt.plot(X[i], label='New')
plt.title(title)
plt.show()
time.sleep(1)
if y_pred[i] == y[i]:
print("Successfully Detect") # 成功预测
print("Don't run the car")
title = "Successfully Detect, " + "Don't run the car"
plt.title(title)
plt.show()
else:
print("Detection is false.") # 失败预测
print("Run the car")
title = "Detection is false, " + "Run the car"
plt.title(title)
plt.show()
print("-------------------------")