|
"""
|
|
这是带注释的,我用中文写了
|
|
"""
|
|
|
|
import numpy as np
|
|
from tensorflow.keras.models import Sequential
|
|
from tensorflow.keras.layers import Dense, Dropout
|
|
from tensorflow.keras.losses import binary_crossentropy
|
|
from tensorflow.keras.optimizers import Adam
|
|
from sklearn.metrics import roc_curve
|
|
from scipy.interpolate import interp1d
|
|
from scipy.optimize import brentq
|
|
import matplotlib.pyplot as plt
|
|
from scipy.io.wavfile import read
|
|
from sklearn.preprocessing import normalize
|
|
from generate_array_feature import mald_feature, get_filelist
|
|
import time
|
|
|
|
|
|
|
|
|
|
|
|
batch_size = 10
|
|
feature_len = 110
|
|
loss_function = binary_crossentropy
|
|
no_epochs = 150
|
|
optimizer = Adam()
|
|
verbosity = 1
|
|
model = Sequential()
|
|
model.add(Dense(64, input_dim=feature_len, activation='relu'))
|
|
model.add(Dropout(0.2))
|
|
model.add(Dense(32, activation='relu'))
|
|
model.add(Dropout(0.2))
|
|
model.add(Dense(16, activation='relu'))
|
|
model.add(Dense(1, activation='sigmoid'))
|
|
model.compile(loss=loss_function, optimizer=optimizer, metrics=['accuracy'])
|
|
|
|
model.load_weights(r"/home/fazhong/Github/czx/model.hdf5")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
path_wave = r"/home/fazhong/Github/czx/voice"
|
|
print("Loading data ...")
|
|
name_all = get_filelist(path_wave)
|
|
voice = []
|
|
|
|
X = []
|
|
y = []
|
|
|
|
for file_path in name_all:
|
|
file_name = file_path.split("\\")[-1]
|
|
|
|
if 'normal' in file_name:
|
|
cur_y = 1
|
|
elif 'attack' in file_name:
|
|
cur_y = 0
|
|
|
|
|
|
rate, data = read(file_path)
|
|
voice += [list(data)]
|
|
|
|
X += [list(mald_feature(rate, data))]
|
|
print(list(mald_feature(rate, data)))
|
|
|
|
|
|
y += [cur_y]
|
|
|
|
|
|
|
|
norm_X = normalize(X, axis=0, norm='max')
|
|
|
|
|
|
|
|
|
|
|
|
X = np.asarray(norm_X)
|
|
y = np.asarray(y)
|
|
|
|
|
|
|
|
|
|
|
|
index1 = [5]
|
|
x1 = X[index1]
|
|
y1 = y[index1]
|
|
plt.plot(x1.T, label='normal')
|
|
index2 = [1]
|
|
x2 = X[index2]
|
|
y2 = y[index2]
|
|
plt.plot(x2.T, label='attack')
|
|
plt.legend()
|
|
plt.show()
|
|
|
|
|
|
|
|
scores = model.evaluate(X, y)
|
|
y_pred = np.round(model.predict(X))
|
|
index1 = 8
|
|
index3 = [1, 3, 5, 7, 9]
|
|
for i in index3:
|
|
print('Starting detection:')
|
|
plt.plot(voice[i], label='Voice Signal')
|
|
plt.show()
|
|
time.sleep(2)
|
|
if y[i] == 1:
|
|
print('the ' + str(i) + ' sample is normal')
|
|
title = 'the ' + str(i) + ' sample is normal'
|
|
plt.subplot(1, 2, 1)
|
|
plt.plot(X[index1])
|
|
plt.subplot(1, 2, 2)
|
|
plt.plot(X[i], label='New')
|
|
plt.title(title)
|
|
plt.show()
|
|
time.sleep(1)
|
|
if y_pred[i] == y[i]:
|
|
print("Successfully Detect")
|
|
print("Run the car")
|
|
title = "Successfully Detect, " + "Run the car"
|
|
plt.title(title)
|
|
plt.show()
|
|
else:
|
|
print("Detection is false.")
|
|
print("Don't run the car")
|
|
title = "Detection is false, " + "Don't run the car"
|
|
plt.title(title)
|
|
plt.show()
|
|
else:
|
|
print('the ' + str(i) + ' sample is attack')
|
|
title = 'the ' + str(i) + ' sample is attack'
|
|
plt.subplot(1, 2, 1)
|
|
plt.plot(X[index1], label='Normal')
|
|
plt.subplot(1, 2, 2)
|
|
plt.plot(X[i], label='New')
|
|
plt.title(title)
|
|
plt.show()
|
|
time.sleep(1)
|
|
if y_pred[i] == y[i]:
|
|
print("Successfully Detect")
|
|
print("Don't run the car")
|
|
title = "Successfully Detect, " + "Don't run the car"
|
|
plt.title(title)
|
|
plt.show()
|
|
else:
|
|
print("Detection is false.")
|
|
print("Run the car")
|
|
title = "Detection is false, " + "Run the car"
|
|
plt.title(title)
|
|
plt.show()
|
|
|
|
print("-------------------------")
|
|
|