''' This is the main ArrayID feature building script revised: April 04, 2021 ''' import glob import os import numpy as np import matplotlib.pyplot as plt from scipy.io.wavfile import read from scipy.fftpack import fft, ifft, fftfreq from scipy import signal import random from librosa.core import lpc import librosa.feature import csv from sklearn.preprocessing import normalize from direction_detection import * ############################################## # HELPER FUNCTIONS # converts hz to indices -> allows splicing of freq data def hz_to_indices(freqs, lowcut, highcut): i = 0 while freqs[i] < lowcut: i += 1 low = i while freqs[i] < highcut: i += 1 return low, i # compresses our feature vectors # After extracting our features, they could be different lengths depending on # the input signal, so we normalize each feature vector to be the same no matter # the speaker def get_row_compressor(old_dimension, new_dimension): dim_compressor = np.zeros((new_dimension, old_dimension)) bin_size = float(old_dimension) / new_dimension next_bin_break = bin_size which_row = 0 which_column = 0 while which_row < dim_compressor.shape[0] and which_column < dim_compressor.shape[1]: if round(next_bin_break - which_column, 10) >= 1: dim_compressor[which_row, which_column] = 1 which_column += 1 elif next_bin_break == which_column: which_row += 1 next_bin_break += bin_size else: partial_credit = next_bin_break - which_column dim_compressor[which_row, which_column] = partial_credit which_row += 1 dim_compressor[which_row, which_column] = 1 - partial_credit which_column += 1 next_bin_break += bin_size dim_compressor /= bin_size return dim_compressor # helper functions for above function def get_column_compressor(old_dimension, new_dimension): return get_row_compressor(old_dimension, new_dimension).transpose() def compress_and_average(array, new_shape): return np.mat(get_row_compressor(array.shape[0], new_shape[0])) * \ np.mat(array) * \ np.mat(get_column_compressor(array.shape[1], new_shape[1])) ############################################## ############################################## # MAIN FEATURE EXTRACTION FUNCTIONS def get_filelist(dir): Filelist = [] for home, dirs, files in os.walk(dir): for filename in files: Filelist.append(os.path.join(home, filename)) return Filelist def lpcc(data, n=15): """ f_LPC = lpcc(data, n): get the LPCC from the voice data The order n is 15 """ size_lpc = n # define the order of LPCC a = lpc(data, order = size_lpc) # use the built-in function a = -a f_LPC = np.zeros(len(a)) f_LPC[0] = np.log(size_lpc) for i in range(1, len(a)): k = np.arange(1, i) # k from 1 to i-1 f_LPC[i] = a[i] + np.sum((1 - k/i) * a[k] * f_LPC[i - k]) return f_LPC[1:] # returns long term fft def get_ltfd(spec, m=20, start_index=1, end_index=86): # only get the useful part spec = spec[:, start_index: end_index, :(spec.shape[2] - spec.shape[2] % m)] # merge the spec in the time line channels = np.sum(spec, axis=2) all_ffts = np.sum(channels, axis=0) all_ffts /= np.max(all_ffts) channels_ffts = np.asarray([channels[i, :] / np.max(channels[i, :]) for i in range(channels.shape[0])]) return all_ffts, channels_ffts # returns long term fft def get_ltfp(spec, m=20, start_index_fp=1, end_index_fp=86): # only get the useful part spec = spec[:, start_index_fp:end_index_fp, :(spec.shape[2] - spec.shape[2] % m)] # split the data splices = np.asarray(np.split(spec, m, axis=2)) # merge the data (wang ge hua) mesh = np.zeros((splices.shape[0], splices.shape[1], splices.shape[2])) for i in range(mesh.shape[0]): for j in range(mesh.shape[1]): for k in range(mesh.shape[2]): mesh[i, j, k] = np.sum(splices[i, j, k, :]) # calculate the standard deviation std_feature = np.zeros((mesh.shape[0], mesh.shape[2])) for i in range(std_feature.shape[0]): for j in range(std_feature.shape[1]): std_feature[i, j] = np.std(mesh[i, :, j]) / np.mean(mesh[i, :, j]) # define the ltfp LTFP = np.mean(std_feature, axis=0) LTFP = LTFP / np.max(LTFP) return LTFP def feature_distribution(channel_fft): num_feature = 5 f_dis = np.zeros(2 * num_feature) co = np.zeros((num_feature, len(channel_fft))) for num in range(len(channel_fft)): a = channel_fft[num] for i in range(1, len(a)): a[i] = a[i-1] + a[i] a = a / np.max(a) dis_index = [0.1, 0.3, 0.5, 0.7, 0.9] for i in range(len(dis_index)): co[i, num] = find_value(a, dis_index[i]) co[:, num] /= len(a) for i in range(num_feature): f_dis[i] = np.mean(co[i, :]) f_dis[i + num_feature] = np.std(co[i, :]) return co, f_dis def find_value(a, dis_index): c = 0 for i in range(len(a) - 1): if a[i] <= dis_index <= a[i + 1]: c = i break return c def mald_feature(rate, data): n_fft = 4096 # detect the direction if data.shape[1] == 4: closestPair = getAngle_for_four(data, fs=rate) elif data.shape[1] == 6: closestPair = getAngle_for_six(data, fs=rate) elif data.shape[1] == 8: closestPair = getAngle_for_eight(data, fs=rate) pairs = getDirection_Pair(closestPair, data.shape[1]) # low and high thresholds for field print features -> we want 1 - 10kHz range lowcut_fp = 1 highcut_fp = 5000 if highcut_fp > rate / 2: # in case the sampling rate is very small highcut_fp = rate / 2 - 100 highcut_fd = 1000 # input rate -> make sure to change this based on device. # All of the devices are 44100 except for the AMLOGIC, which is 16kHz. # If this rate is not changed acccordingly, the _ltfp and _ltfft features # will be off # just some helper splicing globals freq = fftfreq(n_fft, 1. / rate) # data = logmmse(data, rate) start_index, end_index = hz_to_indices(freq, lowcut_fp, highcut_fd) start_index_fp, end_index_fp = hz_to_indices(freq, lowcut_fp, highcut_fp) # empty feature vectors _lpcc = [] # extract lfp and lpcc from each channel independently, then sum for i in pairs: a = np.asfortranarray(data[:, i]).astype(dtype=float) _lpcc += list(lpcc(a)) # calculate the spectrogram spec = [signal.stft(data[:, i], fs=rate, window='hann', nperseg=1024, noverlap=768, nfft=n_fft)[2] for i in range(data.shape[1])] spec = np.asarray(spec) # convert list to numpy # obtain the absolute value spec = np.abs(spec) # get the ltfp feature # get ltfp features and compress to a 50 feature vectoc _ltfd, channel_fft = get_ltfd(spec=spec, start_index=start_index, end_index=end_index) _ltfd = list(compress_and_average(_ltfd.reshape(len(_ltfd), 1), (20, 1)).flat) co, _fdis = feature_distribution(channel_fft) # get ltfp features and compress to a 50 feature vector _ltfp = get_ltfp(spec=spec, start_index_fp=start_index_fp, end_index_fp=end_index_fp) _ltfp = list(compress_and_average(_ltfp.reshape(len(_ltfp), 1), (20, 1)).flat) # out is final feature vector, each data point formed as a tuple : (X, y), where X is the feature vector and y is the label # X_y is just compiled l ist of all the tuples feature = np.concatenate((_lpcc, _ltfd, _fdis, _ltfp)) return feature