File size: 5,369 Bytes
598d165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f2632b
598d165
 
 
 
 
 
 
 
 
 
 
e07ba8d
598d165
 
 
e07ba8d
598d165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
from transformers import TextStreamer

import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "Evaluation"))
from llava.constants import IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.mm_utils import get_model_name_from_path, KeywordsStoppingCriteria, tokenizer_image_token
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
import shutil


cur_dir = os.path.dirname(os.path.abspath(__file__))
title_markdown = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
  <div>
    <h1 >VLM-RLAIF: Tuning Large Multimodal Models for Videos using Reinforcement Learning from AI Feedback (ACL 2024 Oral) </h1>
    <h5 style="margin: 0;">If you like our project, please give us a star ✨ on Github for the latest update.</h5>
  </div>
</div>


<div align="center">
    <div style="display:flex; gap: 0.25rem;" align="center">
        <a href='https://github.com/yonseivnl/vlm-rlaif'><img src='https://img.shields.io/badge/Github-Code-blue'></a>
        <a href="https://arxiv.org/abs/2402.03746"><img src="https://img.shields.io/badge/Paper-arxiv-green"></a>
    </div>
</div>
""")

block_css = """
#buttons button {
    min-width: min(120px,100%);
}
"""

tos_markdown = ("""""")

learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA.
""")


class Chat:
    def __init__(self, model_path, conv_mode, model_base=None, load_8bit=False, load_4bit=False, device='cuda', cache_dir=None):

        disable_torch_init()
        model_name = get_model_name_from_path(model_path)
        is_rlhf_checkpoint = 'rlhf' in model_path.lower()
        print("MODEL_PATH", model_path)
        print("RLHF Checkpoint: ", is_rlhf_checkpoint)
        if not model_base or model_base == "none": model_base = None
        if is_rlhf_checkpoint:
            model_name = model_path            
            print("Config?", os.path.exists(os.path.join(model_path, "config.json")))
            if not os.path.exists(os.path.join(model_path, "config.json")):
                print("Copying")
                shutil.copy(os.path.join(model_base, "config.json"), os.path.join(model_path, "config.json")) # Copy SFT model's config -> to RLHF folder
                print("Listed", os.listdir(model_path))
                print("Copying done")
        self.tokenizer, self.model, image_processor, context_len = load_pretrained_model(model_path, model_base, model_name, False, False, device=device)

        

        self.image_processor = image_processor
        self.conv_mode = conv_mode
        self.conv = conv_templates[conv_mode].copy()
        self.device = self.model.device
        print(self.model)

    def get_prompt(self, qs, state):
        state.append_message(state.roles[0], qs)
        state.append_message(state.roles[1], None)
        return state
    
    def _get_latest_prompt(self, state):
        new_state = state.copy()
        new_state.messages = state.messages[-2:]
        return new_state

    @torch.inference_mode()
    # def generate(self, images_tensor: list, prompt: str, first_run: bool, state):
    def generate(self, images_tensor: torch.Tensor, prompt: str, first_run: bool, state):
        tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor

        state = self.get_prompt(prompt, state)
        # prompt = state.get_prompt()
        latest_state = self._get_latest_prompt(state)
        prompt = latest_state.get_prompt()
    
        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device)

        temperature = 0.2

        max_new_tokens = 1024

        stop_str = self.conv.sep if self.conv.sep_style != SeparatorStyle.TWO else self.conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
        streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
        print(prompt, input_ids.shape, images_tensor.shape)
        # print(images_tensor)
        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=images_tensor,
                do_sample=True,
                temperature=temperature,
                max_new_tokens=max_new_tokens,
                streamer=streamer,
                use_cache=True,
                stopping_criteria=[stopping_criteria])

        input_token_len = input_ids.shape[1]
        n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
        if n_diff_input_output > 0:
            print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
        outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
        outputs = outputs.strip()
        outputs = outputs.replace("QA_GT_caption_based_noisy", "")
        if outputs.endswith(stop_str):
            outputs = outputs[:-len(stop_str)]
        outputs = outputs.strip()

        print('response', outputs)
        return outputs, state