Spaces:
Runtime error
Runtime error
File size: 1,290 Bytes
c8081ec d2c1a68 c8081ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
import torch
import re
import gradio as gr
from transformers import AutoTokenizer,ViTFeatureExtractor,VisionEncoderDecoderModel
device = 'cpu'
encoder_checkpoint = 'google/vit-base-patch16-224'
decoder_checkpoint = 'gpt2'
model_checkpoint = 'nlpconnect/vit-gpt2-image-captioning'
feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
def predict(image,max_length=64,num_beams=4):
image = image.convert('RGB')
image = feature_extractor(image,return_tensor='pt').pixel_values.to(device)
clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
caption_ids = model.generate(image, max_length = max_length)[0]
caption_text = clean_text(tokenizer.decode(caption_ids))
return caption_text
input = gr.inputs.Image(label='Image to generate caption',type = 'pil', optional=False)
output = gr.outputs.Textbox(type="auto",label="Caption")
article = "This is a Image captioning model created by Shreyas Dixit"
title = "Image Captioning"
interface = gr.Interface(
fn=predict,
inputs = input,
theme="grass",
outputs=output,
examples = examples,
title=title,
description=article,
)
interface.launch(debug=True) |