import os import PyPDF2 from langchain_text_splitters import RecursiveCharacterTextSplitter from qdrant_client import QdrantClient from dotenv import load_dotenv load_dotenv() PATH_TO_KNOWLEDGE_BASE = "knowledge_base" # Path where the PDFs are stored COLLECTION_NAME = "aws_faq" # Name of the collection VECTOR_DB_PATH = "./qdrant" # Change this to your own path # qdrant_client = QdrantClient(path=VECTOR_DB_PATH) # If using qdrant cloud, use the following code qdrant_client = QdrantClient( os.getenv("QDRANT_URL"), api_key=os.getenv("QDRANT_API_KEY"), ) def ingest_embeddings(): metadatas = [] text = [] for file in os.listdir(PATH_TO_KNOWLEDGE_BASE): if file.endswith('.pdf'): pdf_path = os.path.join(PATH_TO_KNOWLEDGE_BASE, file) pdf_reader = PyPDF2.PdfReader(pdf_path) page_number = 1 for page in pdf_reader.pages: text.append(page.extract_text()) metadatas.append({"page": page_number, "file": file}) page_number += 1 text_splitter = RecursiveCharacterTextSplitter(separators=["\n\n"], chunk_size=400, chunk_overlap=50) chunked_documents = text_splitter.create_documents(text, metadatas=metadatas) chunks, metadata, ids = zip(*[(chunk.page_content, chunk.metadata, i+1) for i, chunk in enumerate(chunked_documents)]) try: qdrant_client.add( collection_name=COLLECTION_NAME, documents=chunks, metadata=metadata, ids=ids ) print("Collection created and persisted") except Exception as error: print(f"Error: {error}") if __name__ == "__main__": ingest_embeddings()