|
import os |
|
from nemoguardrails import LLMRails |
|
from nemoguardrails.actions.actions import ActionResult |
|
from qdrant_client import QdrantClient |
|
from dotenv import load_dotenv |
|
load_dotenv() |
|
|
|
COLLECTION_NAME = "nemo-docs" |
|
|
|
qdrant_client = QdrantClient( |
|
os.getenv("QDRANT_URL"), |
|
api_key=os.getenv("QDRANT_API_KEY"), |
|
) |
|
|
|
def vector_search(query, limit=4): |
|
documents = qdrant_client.query(collection_name=COLLECTION_NAME, query_text=query, limit=limit) |
|
context = '\n\n'.join([f"PAGE_CONTENT: {doc.metadata['document']} SOURCE: {doc.metadata['source']}" for doc in documents]) |
|
return context |
|
|
|
def add_vectors(chunks, metadata, ids): |
|
qdrant_client.add( |
|
collection_name=COLLECTION_NAME, |
|
documents=chunks, |
|
metadata=metadata, |
|
ids=ids |
|
) |
|
|
|
def prompt_template(question, context): |
|
return f"""You are an **GitDoc AI** Chatbot, a helpful assistant that assists users with their |
|
**NVIDIA's NeMo Guardrails** related questions. |
|
CONTEXT INFORMATION is below. |
|
--------------------- |
|
{context} |
|
--------------------- |
|
|
|
RULES: |
|
1. Only Answer the USER QUESTION using the CONTEXT INFORMATION text above. |
|
2. Keep your answer grounded in the facts of the CONTEXT. |
|
3. If you don't know the answer, just say that you don't know politely. |
|
4. Should not answer any out-of-context USER QUESTION. |
|
5. Add references only if needed in markdown format. |
|
|
|
USER QUESTION: ```{question}``` |
|
Answer in markdown:""" |
|
|
|
def rag(context: dict, llm) -> ActionResult: |
|
context_updates = {} |
|
user_message = context.get("last_user_message") |
|
relevant_chunks = vector_search(user_message) |
|
context_updates["relevant_chunks"] = relevant_chunks |
|
prompt = prompt_template(user_message, relevant_chunks) |
|
answer = llm.invoke(prompt).content |
|
context_updates["_last_bot_prompt"] = prompt |
|
return ActionResult(return_value=answer, context_updates=context_updates) |
|
|
|
def init(app: LLMRails): |
|
app.register_action(rag, "rag") |