import os, asyncio import gradio as gr from dotenv import load_dotenv from nemoguardrails import LLMRails, RailsConfig from chain import initialize_llm, rag_chain from ui import chat, demo_header_settings, custom_css, chat_examples load_dotenv() os.environ["TOKENIZERS_PARALLELISM"] = "false" MODEL_LIST = { "openai": "gpt-4o-mini", "groq": "llama-3.2-11b-text-preview", "gemini": "gemini-1.5-pro-002", } def init_app(api_key, provider): try: loop = asyncio.get_event_loop() except RuntimeError: loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) try: llm = initialize_llm(api_key, provider, MODEL_LIST[provider]) config = RailsConfig.from_path("nemo") app = LLMRails(config=config, llm=llm) gr.Info(f"Chat initialized with {provider}") return app, llm except Exception as e: gr.Error(f"Error initializing the app: {e}") return None, None # Prediction function to generate responses def predict(message, history, app, llm, is_guardrails=True): if not app or not llm: return "Chatbot not initialized. Please start chat first." if is_guardrails: history.append({"role": "user", "content": message}) options = {"output_vars": ["triggered_input_rail", "triggered_output_rail"]} output = app.generate(messages=history, options=options) info = app.explain() info.print_llm_calls_summary() warning_message = output.output_data["triggered_input_rail"] or output.output_data["triggered_output_rail"] if warning_message: gr.Warning(f"Guardrail triggered: {warning_message}") return output.response[0]['content'] else: return rag_chain(llm, message) def respond(message, chat_history, app, llm, guardrail_enabled): bot_message = predict(message, chat_history, app, llm, guardrail_enabled) chat_history.append({"role": "assistant", "content": bot_message}) return "", chat_history # Gradio UI setup with gr.Blocks(css=custom_css) as demo: app_state = gr.State(None) llm_state = gr.State(None) model_key, provider, guardrail, start_chat = demo_header_settings(MODEL_LIST) start_chat.click( init_app, [model_key, provider], [app_state, llm_state] ) chatbot = chat() msg = gr.Textbox(placeholder="Type your message here...", type="text", show_label=False, submit_btn=True) examples = gr.Examples(chat_examples, msg) msg.submit( respond, [msg, chatbot, app_state, llm_state, guardrail], [msg, chatbot] ) # Launch the application if __name__ == "__main__": demo.launch()