Spaces:
Runtime error
Runtime error
# This file is adapted from gradio_*.py in https://github.com/lllyasviel/ControlNet/tree/f4748e3630d8141d7765e2bd9b1e348f47847707 | |
# The original license file is LICENSE.ControlNet in this repo. | |
from __future__ import annotations | |
import pathlib | |
import random | |
import shlex | |
import subprocess | |
import sys | |
import cv2 | |
import einops | |
import numpy as np | |
import torch | |
from huggingface_hub import hf_hub_url | |
from pytorch_lightning import seed_everything | |
sys.path.append('ControlNet') | |
import config | |
from annotator.canny import apply_canny | |
from annotator.hed import apply_hed, nms | |
from annotator.midas import apply_midas | |
from annotator.mlsd import apply_mlsd | |
from annotator.openpose import apply_openpose | |
from annotator.uniformer import apply_uniformer | |
from annotator.util import HWC3, resize_image | |
from cldm.model import create_model, load_state_dict | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from share import * | |
MODEL_NAMES = { | |
'canny': 'control_canny-fp16.safetensors', | |
'hough': 'control_mlsd-fp16.safetensors', | |
'hed': 'control_hed-fp16.safetensors', | |
'scribble': 'control_scribble-fp16.safetensors', | |
'pose': 'control_openpose-fp16.safetensors', | |
'seg': 'control_seg-fp16.safetensors', | |
'depth': 'control_depth-fp16.safetensors', | |
'normal': 'control_normal-fp16.safetensors', | |
} | |
MODEL_REPO = 'webui/ControlNet-modules-safetensors' | |
DEFAULT_BASE_MODEL_REPO = 'theintuitiveye/HARDblend' | |
DEFAULT_BASE_MODEL_FILENAME = 'HARDblend.safetensors' | |
DEFAULT_BASE_MODEL_URL = 'https://huggingface.co/theintuitiveye/HARDblend/resolve/main/HARDblend.safetensors' | |
class Model: | |
def __init__(self, | |
model_config_path: str = 'ControlNet/models/cldm_v15.yaml', | |
model_dir: str = 'models'): | |
self.device = torch.device( | |
'cuda:0' if torch.cuda.is_available() else 'cpu') | |
self.model = create_model(model_config_path).to(self.device) | |
self.ddim_sampler = DDIMSampler(self.model) | |
self.task_name = '' | |
self.base_model_url = '' | |
self.model_dir = pathlib.Path(model_dir) | |
self.model_dir.mkdir(exist_ok=True, parents=True) | |
self.download_models() | |
self.set_base_model(DEFAULT_BASE_MODEL_REPO, | |
DEFAULT_BASE_MODEL_FILENAME) | |
def set_base_model(self, model_id: str, filename: str) -> str: | |
if not model_id or not filename: | |
return self.base_model_url | |
base_model_url = hf_hub_url(model_id, filename) | |
if base_model_url != self.base_model_url: | |
self.load_base_model(base_model_url) | |
self.base_model_url = base_model_url | |
return self.base_model_url | |
def download_base_model(self, model_url: str) -> pathlib.Path: | |
self.model_dir.mkdir(exist_ok=True, parents=True) | |
model_name = model_url.split('/')[-1] | |
out_path = self.model_dir / model_name | |
if not out_path.exists(): | |
subprocess.run(shlex.split(f'wget {model_url} -O {out_path}')) | |
return out_path | |
def load_base_model(self, model_url: str) -> None: | |
model_path = self.download_base_model(model_url) | |
self.model.load_state_dict(load_state_dict(model_path, | |
location=self.device.type), | |
strict=False) | |
def load_weight(self, task_name: str) -> None: | |
if task_name == self.task_name: | |
return | |
weight_path = self.get_weight_path(task_name) | |
self.model.control_model.load_state_dict( | |
load_state_dict(weight_path, location=self.device.type)) | |
self.task_name = task_name | |
def get_weight_path(self, task_name: str) -> str: | |
if 'scribble' in task_name: | |
task_name = 'scribble' | |
return f'{self.model_dir}/{MODEL_NAMES[task_name]}' | |
def download_models(self) -> None: | |
self.model_dir.mkdir(exist_ok=True, parents=True) | |
for name in MODEL_NAMES.values(): | |
out_path = self.model_dir / name | |
if out_path.exists(): | |
continue | |
model_url = hf_hub_url(MODEL_REPO, name) | |
subprocess.run(shlex.split(f'wget {model_url} -O {out_path}')) | |
def process_canny(self, input_image, prompt, a_prompt, n_prompt, | |
num_samples, image_resolution, ddim_steps, scale, seed, | |
eta, low_threshold, high_threshold): | |
self.load_weight('canny') | |
img = resize_image(HWC3(input_image), image_resolution) | |
H, W, C = img.shape | |
detected_map = apply_canny(img, low_threshold, high_threshold) | |
detected_map = HWC3(detected_map) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = { | |
'c_concat': [control], | |
'c_crossattn': [ | |
self.model.get_learned_conditioning( | |
[prompt + ', ' + a_prompt] * num_samples) | |
] | |
} | |
un_cond = { | |
'c_concat': [control], | |
'c_crossattn': | |
[self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = self.ddim_sampler.sample( | |
ddim_steps, | |
num_samples, | |
shape, | |
cond, | |
verbose=False, | |
eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = ( | |
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [255 - detected_map] + results | |
def process_hough(self, input_image, prompt, a_prompt, n_prompt, | |
num_samples, image_resolution, detect_resolution, | |
ddim_steps, scale, seed, eta, value_threshold, | |
distance_threshold): | |
self.load_weight('hough') | |
input_image = HWC3(input_image) | |
detected_map = apply_mlsd(resize_image(input_image, detect_resolution), | |
value_threshold, distance_threshold) | |
detected_map = HWC3(detected_map) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
detected_map = cv2.resize(detected_map, (W, H), | |
interpolation=cv2.INTER_NEAREST) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = { | |
'c_concat': [control], | |
'c_crossattn': [ | |
self.model.get_learned_conditioning( | |
[prompt + ', ' + a_prompt] * num_samples) | |
] | |
} | |
un_cond = { | |
'c_concat': [control], | |
'c_crossattn': | |
[self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = self.ddim_sampler.sample( | |
ddim_steps, | |
num_samples, | |
shape, | |
cond, | |
verbose=False, | |
eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = ( | |
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [ | |
255 - cv2.dilate(detected_map, | |
np.ones(shape=(3, 3), dtype=np.uint8), | |
iterations=1) | |
] + results | |
def process_hed(self, input_image, prompt, a_prompt, n_prompt, num_samples, | |
image_resolution, detect_resolution, ddim_steps, scale, | |
seed, eta): | |
self.load_weight('hed') | |
input_image = HWC3(input_image) | |
detected_map = apply_hed(resize_image(input_image, detect_resolution)) | |
detected_map = HWC3(detected_map) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
detected_map = cv2.resize(detected_map, (W, H), | |
interpolation=cv2.INTER_LINEAR) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = { | |
'c_concat': [control], | |
'c_crossattn': [ | |
self.model.get_learned_conditioning( | |
[prompt + ', ' + a_prompt] * num_samples) | |
] | |
} | |
un_cond = { | |
'c_concat': [control], | |
'c_crossattn': | |
[self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = self.ddim_sampler.sample( | |
ddim_steps, | |
num_samples, | |
shape, | |
cond, | |
verbose=False, | |
eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = ( | |
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
def process_scribble(self, input_image, prompt, a_prompt, n_prompt, | |
num_samples, image_resolution, ddim_steps, scale, | |
seed, eta): | |
self.load_weight('scribble') | |
img = resize_image(HWC3(input_image), image_resolution) | |
H, W, C = img.shape | |
detected_map = np.zeros_like(img, dtype=np.uint8) | |
detected_map[np.min(img, axis=2) < 127] = 255 | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = { | |
'c_concat': [control], | |
'c_crossattn': [ | |
self.model.get_learned_conditioning( | |
[prompt + ', ' + a_prompt] * num_samples) | |
] | |
} | |
un_cond = { | |
'c_concat': [control], | |
'c_crossattn': | |
[self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = self.ddim_sampler.sample( | |
ddim_steps, | |
num_samples, | |
shape, | |
cond, | |
verbose=False, | |
eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = ( | |
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [255 - detected_map] + results | |
def process_scribble_interactive(self, input_image, prompt, a_prompt, | |
n_prompt, num_samples, image_resolution, | |
ddim_steps, scale, seed, eta): | |
self.load_weight('scribble') | |
img = resize_image(HWC3(input_image['mask'][:, :, 0]), | |
image_resolution) | |
H, W, C = img.shape | |
detected_map = np.zeros_like(img, dtype=np.uint8) | |
detected_map[np.min(img, axis=2) > 127] = 255 | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = { | |
'c_concat': [control], | |
'c_crossattn': [ | |
self.model.get_learned_conditioning( | |
[prompt + ', ' + a_prompt] * num_samples) | |
] | |
} | |
un_cond = { | |
'c_concat': [control], | |
'c_crossattn': | |
[self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = self.ddim_sampler.sample( | |
ddim_steps, | |
num_samples, | |
shape, | |
cond, | |
verbose=False, | |
eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = ( | |
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [255 - detected_map] + results | |
def process_fake_scribble(self, input_image, prompt, a_prompt, n_prompt, | |
num_samples, image_resolution, detect_resolution, | |
ddim_steps, scale, seed, eta): | |
self.load_weight('scribble') | |
input_image = HWC3(input_image) | |
detected_map = apply_hed(resize_image(input_image, detect_resolution)) | |
detected_map = HWC3(detected_map) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
detected_map = cv2.resize(detected_map, (W, H), | |
interpolation=cv2.INTER_LINEAR) | |
detected_map = nms(detected_map, 127, 3.0) | |
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0) | |
detected_map[detected_map > 4] = 255 | |
detected_map[detected_map < 255] = 0 | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = { | |
'c_concat': [control], | |
'c_crossattn': [ | |
self.model.get_learned_conditioning( | |
[prompt + ', ' + a_prompt] * num_samples) | |
] | |
} | |
un_cond = { | |
'c_concat': [control], | |
'c_crossattn': | |
[self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = self.ddim_sampler.sample( | |
ddim_steps, | |
num_samples, | |
shape, | |
cond, | |
verbose=False, | |
eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = ( | |
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [255 - detected_map] + results | |
def process_pose(self, input_image, prompt, a_prompt, n_prompt, | |
num_samples, image_resolution, detect_resolution, | |
ddim_steps, scale, seed, eta): | |
self.load_weight('pose') | |
input_image = HWC3(input_image) | |
detected_map, _ = apply_openpose( | |
resize_image(input_image, detect_resolution)) | |
detected_map = HWC3(detected_map) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
detected_map = cv2.resize(detected_map, (W, H), | |
interpolation=cv2.INTER_NEAREST) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = { | |
'c_concat': [control], | |
'c_crossattn': [ | |
self.model.get_learned_conditioning( | |
[prompt + ', ' + a_prompt] * num_samples) | |
] | |
} | |
un_cond = { | |
'c_concat': [control], | |
'c_crossattn': | |
[self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = self.ddim_sampler.sample( | |
ddim_steps, | |
num_samples, | |
shape, | |
cond, | |
verbose=False, | |
eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = ( | |
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
def process_seg(self, input_image, prompt, a_prompt, n_prompt, num_samples, | |
image_resolution, detect_resolution, ddim_steps, scale, | |
seed, eta): | |
self.load_weight('seg') | |
input_image = HWC3(input_image) | |
detected_map = apply_uniformer( | |
resize_image(input_image, detect_resolution)) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
detected_map = cv2.resize(detected_map, (W, H), | |
interpolation=cv2.INTER_NEAREST) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = { | |
'c_concat': [control], | |
'c_crossattn': [ | |
self.model.get_learned_conditioning( | |
[prompt + ', ' + a_prompt] * num_samples) | |
] | |
} | |
un_cond = { | |
'c_concat': [control], | |
'c_crossattn': | |
[self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = self.ddim_sampler.sample( | |
ddim_steps, | |
num_samples, | |
shape, | |
cond, | |
verbose=False, | |
eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = ( | |
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
def process_depth(self, input_image, prompt, a_prompt, n_prompt, | |
num_samples, image_resolution, detect_resolution, | |
ddim_steps, scale, seed, eta): | |
self.load_weight('depth') | |
input_image = HWC3(input_image) | |
detected_map, _ = apply_midas( | |
resize_image(input_image, detect_resolution)) | |
detected_map = HWC3(detected_map) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
detected_map = cv2.resize(detected_map, (W, H), | |
interpolation=cv2.INTER_LINEAR) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = { | |
'c_concat': [control], | |
'c_crossattn': [ | |
self.model.get_learned_conditioning( | |
[prompt + ', ' + a_prompt] * num_samples) | |
] | |
} | |
un_cond = { | |
'c_concat': [control], | |
'c_crossattn': | |
[self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = self.ddim_sampler.sample( | |
ddim_steps, | |
num_samples, | |
shape, | |
cond, | |
verbose=False, | |
eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = ( | |
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
def process_normal(self, input_image, prompt, a_prompt, n_prompt, | |
num_samples, image_resolution, detect_resolution, | |
ddim_steps, scale, seed, eta, bg_threshold): | |
self.load_weight('normal') | |
input_image = HWC3(input_image) | |
_, detected_map = apply_midas(resize_image(input_image, | |
detect_resolution), | |
bg_th=bg_threshold) | |
detected_map = HWC3(detected_map) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
detected_map = cv2.resize(detected_map, (W, H), | |
interpolation=cv2.INTER_LINEAR) | |
control = torch.from_numpy( | |
detected_map[:, :, ::-1].copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
cond = { | |
'c_concat': [control], | |
'c_crossattn': [ | |
self.model.get_learned_conditioning( | |
[prompt + ', ' + a_prompt] * num_samples) | |
] | |
} | |
un_cond = { | |
'c_concat': [control], | |
'c_crossattn': | |
[self.model.get_learned_conditioning([n_prompt] * num_samples)] | |
} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = self.ddim_sampler.sample( | |
ddim_steps, | |
num_samples, | |
shape, | |
cond, | |
verbose=False, | |
eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
self.model.low_vram_shift(is_diffusing=False) | |
x_samples = self.model.decode_first_stage(samples) | |
x_samples = ( | |
einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + | |
127.5).cpu().numpy().clip(0, 255).astype(np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |