import streamlit as st from ultralytics import YOLO from PIL import Image import torchvision.transforms as transforms import base64 # Set Streamlit Page Configuration st.set_page_config( page_title="Brain Tumor Segmentation", page_icon="logo/logo.png", layout="centered" ) # Cache the YOLO model to avoid reloading on every interaction @st.cache_resource() def load_model(): return YOLO("model/best.pt") # Update path if needed model = load_model() # Define image transformation pipeline transform = transforms.Compose([ transforms.Resize((640, 640)), transforms.ToTensor() ]) # Function to predict and overlay tumor segmentation mask def predict_tumor(image: Image.Image): try: image_tensor = transform(image).unsqueeze(0) # Add batch dimension results = model.predict(image_tensor) output_image = results[0].plot() # Overlay segmentation mask return Image.fromarray(output_image) except Exception as e: st.error(f"Prediction Error: {e}") return None # Function to encode image to base64 for embedding def get_base64_image(image_path): with open(image_path, "rb") as img_file: return base64.b64encode(img_file.read()).decode() # Display logo image_base64 = get_base64_image("logo/logo.png") st.markdown( f'
Detect and segment brain tumors from MRI scans.
", unsafe_allow_html=True) if uploaded_file: image = Image.open(uploaded_file).convert("RGB") col1, col2 = st.columns(2) with col1: st.image(image, caption="📷 Uploaded Image", use_container_width=True) if st.sidebar.button("🔍 Predict Tumor Segmentation"): segmented_image = predict_tumor(image) if segmented_image: with col2: st.image(segmented_image, caption="🎯 Segmented Tumor", use_container_width=True) else: st.error("Segmentation failed. Please try again.") st.markdown("---") st.info("This app uses **YOLO-Seg** for real-time tumor segmentation. Upload an MRI image to get started.")