File size: 3,943 Bytes
2353f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385665b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2353f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
385665b
 
2353f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import streamlit as st
from ultralytics import YOLO
from PIL import Image
import torchvision.transforms as transforms
import base64
import cv2
import numpy as np

# Set Streamlit Page Configuration
st.set_page_config(
    page_title="PPE Detect",
    page_icon="logo/logo.png",
    layout="centered"
)

# Cache the YOLO model to optimize performance
@st.cache_resource()
def load_model():
    return YOLO("model/best.pt")  # Ensure correct model path

model = load_model()

# Define image transformation pipeline
transform = transforms.Compose([
    transforms.Resize((640, 640)),
    transforms.ToTensor()
])

# Function to perform PPE detection on images
def predict_ppe(image: Image.Image):
    try:
        image_tensor = transform(image).unsqueeze(0)  # Add batch dimension
        results = model.predict(image_tensor)
        output_image = results[0].plot()  # Overlay predictions
        return Image.fromarray(output_image)
    except Exception as e:
        st.error(f"Prediction Error: {e}")
        return None

# Function to encode image to base64 for embedding
def get_base64_image(image_path):
    try:
        with open(image_path, "rb") as img_file:
            return base64.b64encode(img_file.read()).decode()
    except FileNotFoundError:
        return None

# Function for real-time PPE detection using webcam
def live_ppe_detection():
    st.sidebar.write("Starting live detection...")
    cap = cv2.VideoCapture(0)
    if not cap.isOpened():
        st.sidebar.error("Error: Could not open webcam.")
        return
    
    stframe = st.empty()
    stop_button = st.sidebar.button("Stop Live Detection", key="stop_button")
    
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            st.sidebar.error("Failed to capture video frame.")
            break
        
        results = model.predict(frame)
        output_frame = results[0].plot()
        stframe.image(output_frame, channels="BGR")
        
        if stop_button:
            break
    
    cap.release()
    cv2.destroyAllWindows()

# Display logo
image_base64 = get_base64_image("logo/logo.png")
if image_base64:
    st.markdown(
        f'<div style="text-align: center;"><img src="data:image/png;base64,{image_base64}" width="100"></div>',
        unsafe_allow_html=True
    )

# UI Customization
st.markdown("""
    <style>
        [data-testid="stSidebar"] { background-color: #1E1E2F; }
        [data-testid="stSidebar"] h1, [data-testid="stSidebar"] h2 { color: white; }
        h1 { text-align: center; font-size: 36px; font-weight: bold; color: #2C3E50; }
        div.stButton > button { background-color: #3498DB; color: white; font-weight: bold; }
        div.stButton > button:hover { background-color: #2980B9; }
    </style>
""", unsafe_allow_html=True)

# Sidebar - File Upload
st.sidebar.header("πŸ“€ Upload an Image")
uploaded_file = st.sidebar.file_uploader("Drag and drop or browse", type=['jpg', 'png', 'jpeg'])

# Sidebar - Live Predictions
st.sidebar.header("πŸ“‘ Live Predictions")
if st.sidebar.button("Start Live Detection", key="start_button"):
    live_ppe_detection()

# Main Page
st.title("PPE Detect")
st.markdown("<p style='text-align: center;'>Detect personal protective equipment (PPE) in images.</p>", unsafe_allow_html=True)

if uploaded_file:
    image = Image.open(uploaded_file).convert("RGB")
    col1, col2 = st.columns(2)
    
    with col1:
        st.image(image, caption="πŸ“· Uploaded Image", use_container_width=True)
    
    if st.sidebar.button("πŸ” Predict PPE", key="predict_button"):
        detected_image = predict_ppe(image)
        if detected_image:
            with col2:
                st.image(detected_image, caption="🎯 PPE Detection Result", use_container_width=True)
        else:
            st.error("Detection failed. Please try again.")


st.info("This app uses **YOLO** for PPE detection. Upload an image or start live detection to get started.")