Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +123 -0
- logo/logo.png +0 -0
- model/best.pt +3 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from ultralytics import YOLO
|
3 |
+
from PIL import Image
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
import base64
|
6 |
+
import cv2
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# Set Streamlit Page Configuration
|
10 |
+
st.set_page_config(
|
11 |
+
page_title="PPE Detect",
|
12 |
+
page_icon="logo/logo.png",
|
13 |
+
layout="centered"
|
14 |
+
)
|
15 |
+
|
16 |
+
# Cache the YOLO model to optimize performance
|
17 |
+
@st.cache_resource()
|
18 |
+
def load_model():
|
19 |
+
return YOLO("model/best.pt") # Ensure correct model path
|
20 |
+
|
21 |
+
model = load_model()
|
22 |
+
|
23 |
+
# Define image transformation pipeline
|
24 |
+
transform = transforms.Compose([
|
25 |
+
transforms.Resize((640, 640)),
|
26 |
+
transforms.ToTensor()
|
27 |
+
])
|
28 |
+
|
29 |
+
# Function to perform PPE detection on images
|
30 |
+
def predict_ppe(image: Image.Image):
|
31 |
+
try:
|
32 |
+
image_tensor = transform(image).unsqueeze(0) # Add batch dimension
|
33 |
+
results = model.predict(image_tensor)
|
34 |
+
output_image = results[0].plot() # Overlay predictions
|
35 |
+
return Image.fromarray(output_image)
|
36 |
+
except Exception as e:
|
37 |
+
st.error(f"Prediction Error: {e}")
|
38 |
+
return None
|
39 |
+
|
40 |
+
# Function to encode image to base64 for embedding
|
41 |
+
def get_base64_image(image_path):
|
42 |
+
try:
|
43 |
+
with open(image_path, "rb") as img_file:
|
44 |
+
return base64.b64encode(img_file.read()).decode()
|
45 |
+
except FileNotFoundError:
|
46 |
+
return None
|
47 |
+
|
48 |
+
# Function for real-time PPE detection using webcam
|
49 |
+
def live_ppe_detection():
|
50 |
+
st.sidebar.write("Starting live detection...")
|
51 |
+
cap = cv2.VideoCapture(0)
|
52 |
+
if not cap.isOpened():
|
53 |
+
st.sidebar.error("Error: Could not open webcam.")
|
54 |
+
return
|
55 |
+
|
56 |
+
stframe = st.empty()
|
57 |
+
stop_button = st.sidebar.button("Stop Live Detection", key="stop_button")
|
58 |
+
|
59 |
+
while cap.isOpened():
|
60 |
+
ret, frame = cap.read()
|
61 |
+
if not ret:
|
62 |
+
st.sidebar.error("Failed to capture video frame.")
|
63 |
+
break
|
64 |
+
|
65 |
+
results = model.predict(frame)
|
66 |
+
output_frame = results[0].plot()
|
67 |
+
stframe.image(output_frame, channels="BGR")
|
68 |
+
|
69 |
+
if stop_button:
|
70 |
+
break
|
71 |
+
|
72 |
+
cap.release()
|
73 |
+
cv2.destroyAllWindows()
|
74 |
+
|
75 |
+
# Display logo
|
76 |
+
image_base64 = get_base64_image("logo/logo.png")
|
77 |
+
if image_base64:
|
78 |
+
st.markdown(
|
79 |
+
f'<div style="text-align: center;"><img src="data:image/png;base64,{image_base64}" width="100"></div>',
|
80 |
+
unsafe_allow_html=True
|
81 |
+
)
|
82 |
+
|
83 |
+
# UI Customization
|
84 |
+
st.markdown("""
|
85 |
+
<style>
|
86 |
+
[data-testid="stSidebar"] { background-color: #1E1E2F; }
|
87 |
+
[data-testid="stSidebar"] h1, [data-testid="stSidebar"] h2 { color: white; }
|
88 |
+
h1 { text-align: center; font-size: 36px; font-weight: bold; color: #2C3E50; }
|
89 |
+
div.stButton > button { background-color: #3498DB; color: white; font-weight: bold; }
|
90 |
+
div.stButton > button:hover { background-color: #2980B9; }
|
91 |
+
</style>
|
92 |
+
""", unsafe_allow_html=True)
|
93 |
+
|
94 |
+
# Sidebar - File Upload
|
95 |
+
st.sidebar.header("π€ Upload an Image")
|
96 |
+
uploaded_file = st.sidebar.file_uploader("Drag and drop or browse", type=['jpg', 'png', 'jpeg'])
|
97 |
+
|
98 |
+
# Sidebar - Live Predictions
|
99 |
+
st.sidebar.header("π‘ Live Predictions")
|
100 |
+
if st.sidebar.button("Start Live Detection", key="start_button"):
|
101 |
+
live_ppe_detection()
|
102 |
+
|
103 |
+
# Main Page
|
104 |
+
st.title("PPE Detect")
|
105 |
+
st.markdown("<p style='text-align: center;'>Detect personal protective equipment (PPE) in images.</p>", unsafe_allow_html=True)
|
106 |
+
|
107 |
+
if uploaded_file:
|
108 |
+
image = Image.open(uploaded_file).convert("RGB")
|
109 |
+
col1, col2 = st.columns(2)
|
110 |
+
|
111 |
+
with col1:
|
112 |
+
st.image(image, caption="π· Uploaded Image", use_container_width=True)
|
113 |
+
|
114 |
+
if st.sidebar.button("π Predict PPE", key="predict_button"):
|
115 |
+
detected_image = predict_ppe(image)
|
116 |
+
if detected_image:
|
117 |
+
with col2:
|
118 |
+
st.image(detected_image, caption="π― PPE Detection Result", use_container_width=True)
|
119 |
+
else:
|
120 |
+
st.error("Detection failed. Please try again.")
|
121 |
+
|
122 |
+
|
123 |
+
st.info("This app uses **YOLO** for PPE detection. Upload an image or start live detection to get started.")
|
logo/logo.png
ADDED
![]() |
model/best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55e526d2cd1861601f0de8660177fe4393f6d773b83e6aedeec4f310a1f080e8
|
3 |
+
size 5473235
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
ultralytics
|
2 |
+
Pillow
|
3 |
+
opencv-python
|