import streamlit as st from ultralytics import YOLO from PIL import Image import torchvision.transforms as transforms import base64 import cv2 import numpy as np # Set Streamlit Page Configuration st.set_page_config( page_title="PPE Detect", page_icon="logo/logo.png", layout="centered" ) # Cache the YOLO model to optimize performance @st.cache_resource() def load_model(): return YOLO("model/best.pt") # Ensure correct model path model = load_model() # Define image transformation pipeline transform = transforms.Compose([ transforms.Resize((640, 640)), transforms.ToTensor() ]) # Function to perform PPE detection on images def predict_ppe(image: Image.Image): try: image_tensor = transform(image).unsqueeze(0) # Add batch dimension results = model.predict(image_tensor) output_image = results[0].plot() # Overlay predictions return Image.fromarray(output_image) except Exception as e: st.error(f"Prediction Error: {e}") return None # Function to encode image to base64 for embedding def get_base64_image(image_path): try: with open(image_path, "rb") as img_file: return base64.b64encode(img_file.read()).decode() except FileNotFoundError: return None # Function for real-time PPE detection using webcam def live_ppe_detection(): st.sidebar.write("Starting live detection...") cap = cv2.VideoCapture(0) if not cap.isOpened(): st.sidebar.error("Error: Could not open webcam.") return stframe = st.empty() stop_button = st.sidebar.button("Stop Live Detection", key="stop_button") while cap.isOpened(): ret, frame = cap.read() if not ret: st.sidebar.error("Failed to capture video frame.") break results = model.predict(frame) output_frame = results[0].plot() stframe.image(output_frame, channels="BGR") if stop_button: break cap.release() cv2.destroyAllWindows() # Display logo image_base64 = get_base64_image("logo/logo.png") if image_base64: st.markdown( f'
', unsafe_allow_html=True ) # UI Customization st.markdown(""" """, unsafe_allow_html=True) # Sidebar - File Upload st.sidebar.header("📤 Upload an Image") uploaded_file = st.sidebar.file_uploader("Drag and drop or browse", type=['jpg', 'png', 'jpeg']) # Sidebar - Live Predictions st.sidebar.header("📡 Live Predictions") if st.sidebar.button("Start Live Detection", key="start_button"): live_ppe_detection() # Main Page st.title("PPE Detect") st.markdown("

Detect personal protective equipment (PPE) in images.

", unsafe_allow_html=True) if uploaded_file: image = Image.open(uploaded_file).convert("RGB") col1, col2 = st.columns(2) with col1: st.image(image, caption="📷 Uploaded Image", use_container_width=True) if st.sidebar.button("🔍 Predict PPE", key="predict_button"): detected_image = predict_ppe(image) if detected_image: with col2: st.image(detected_image, caption="🎯 PPE Detection Result", use_container_width=True) else: st.error("Detection failed. Please try again.") st.info("This app uses **YOLO** for PPE detection. Upload an image or start live detection to get started.")