|
import streamlit as st |
|
from PIL import Image |
|
import os |
|
import base64 |
|
import io |
|
import textwrap |
|
from typing import Optional, Tuple |
|
from dotenv import load_dotenv |
|
from groq import Groq |
|
from reportlab.lib.pagesizes import letter |
|
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as ReportLabImage |
|
from reportlab.lib.styles import getSampleStyleSheet |
|
|
|
|
|
|
|
|
|
st.set_page_config( |
|
page_title="Smart Diet Analyzer", |
|
page_icon="π", |
|
layout="wide", |
|
initial_sidebar_state="expanded" |
|
) |
|
|
|
ALLOWED_FILE_TYPES = ['png', 'jpg', 'jpeg'] |
|
MODEL_NAME = "llama-3.2-11b-vision-preview" |
|
MODEL_SETTINGS = { |
|
'temperature': 0.2, |
|
'max_tokens': 400, |
|
'top_p': 0.5 |
|
} |
|
LOGO_PATH = "src/logo.png" |
|
|
|
|
|
|
|
|
|
@st.cache_data |
|
def get_logo_base64() -> Optional[str]: |
|
"""Load and cache logo as base64 string""" |
|
try: |
|
with open(LOGO_PATH, "rb") as img_file: |
|
return base64.b64encode(img_file.read()).decode("utf-8") |
|
except FileNotFoundError: |
|
st.error(f"Logo file not found at {LOGO_PATH}") |
|
return None |
|
|
|
@st.cache_resource |
|
def initialize_groq_client() -> Groq: |
|
"""Initialize and cache Groq API client""" |
|
load_dotenv() |
|
if api_key := os.getenv("GROQ_API_KEY"): |
|
return Groq(api_key=api_key) |
|
st.error("GROQ_API_KEY not found in environment") |
|
st.stop() |
|
|
|
|
|
|
|
|
|
def process_image(uploaded_file: io.BytesIO) -> Optional[Tuple[str, str]]: |
|
"""Process uploaded image to base64 string with format detection""" |
|
try: |
|
with Image.open(uploaded_file) as img: |
|
fmt = img.format or 'PNG' |
|
buffer = io.BytesIO() |
|
img.save(buffer, format=fmt) |
|
return base64.b64encode(buffer.getvalue()).decode('utf-8'), fmt |
|
except Exception as e: |
|
st.error(f"Image processing error: {str(e)}") |
|
return None |
|
|
|
def generate_pdf_content(report_text: str, logo_b64: Optional[str]) -> io.BytesIO: |
|
"""Generate PDF report with logo and analysis content""" |
|
buffer = io.BytesIO() |
|
doc = SimpleDocTemplate(buffer, pagesize=letter) |
|
styles = getSampleStyleSheet() |
|
story = [] |
|
|
|
|
|
if logo_b64: |
|
try: |
|
logo_data = base64.b64decode(logo_b64) |
|
with Image.open(io.BytesIO(logo_data)) as logo_img: |
|
aspect = logo_img.height / logo_img.width |
|
max_width = 150 |
|
img_width = min(logo_img.width, max_width) |
|
img_height = img_width * aspect |
|
|
|
story.append( |
|
ReportLabImage(io.BytesIO(logo_data), width=img_width, height=img_height) |
|
) |
|
story.append(Spacer(1, 12)) |
|
except Exception as e: |
|
st.error(f"Logo processing error: {str(e)}") |
|
|
|
|
|
story.extend([ |
|
Paragraph("<b>Nutrition Analysis Report</b>", styles['Title']), |
|
Spacer(1, 12), |
|
Paragraph(report_text.replace('\n', '<br/>'), styles['BodyText']) |
|
]) |
|
|
|
try: |
|
doc.build(story) |
|
except Exception as e: |
|
st.error(f"PDF generation failed: {str(e)}") |
|
|
|
buffer.seek(0) |
|
return buffer |
|
|
|
def generate_ai_analysis(client: Groq, image_b64: str, img_format: str) -> Optional[str]: |
|
"""Generate nutritional analysis using Groq's vision API""" |
|
vision_prompt = textwrap.dedent(""" |
|
As an expert nutritionist with advanced image analysis capabilities, analyze the provided food image: |
|
|
|
1. Identify all visible food items |
|
2. Estimate calorie content considering: |
|
- Portion size |
|
- Cooking method |
|
- Food density |
|
3. Mark estimates as "approximate" when assumptions are needed |
|
4. Calculate total meal calories |
|
|
|
Output format: |
|
- Food Item 1: [Name] β Estimated Calories: [value] kcal |
|
- ... |
|
- **Total Estimated Calories:** [value] kcal |
|
|
|
Include confidence levels for unclear images and specify limitations. |
|
""") |
|
|
|
try: |
|
response = client.chat.completions.create( |
|
model=MODEL_NAME, |
|
messages=[{ |
|
"role": "user", |
|
"content": [ |
|
{"type": "text", "text": vision_prompt}, |
|
{"type": "image_url", "image_url": { |
|
"url": f"data:image/{img_format.lower()};base64,{image_b64}" |
|
}} |
|
] |
|
}], |
|
**MODEL_SETTINGS |
|
) |
|
return response.choices[0].message.content |
|
except Exception as e: |
|
st.error(f"API Error: {str(e)}") |
|
return None |
|
|
|
|
|
|
|
|
|
def render_main_content(logo_b64: Optional[str]): |
|
"""Main content layout and interactions""" |
|
st.markdown(f""" |
|
<div style="text-align: center;"> |
|
{f'<img src="data:image/png;base64,{logo_b64}" width="100">' if logo_b64 else ''} |
|
<h2 style="color: #4CAF50;">Smart Diet Analyzer</h2> |
|
<p style="color: #FF6347;">AI-Powered Food & Nutrition Analysis</p> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
st.markdown("---") |
|
|
|
if analysis := st.session_state.get('analysis_result'): |
|
col1, col2 = st.columns(2) |
|
with col1: |
|
pdf_buffer = generate_pdf_content(analysis, logo_b64) |
|
st.download_button( |
|
"π Download Nutrition Report", |
|
data=pdf_buffer, |
|
file_name="nutrition_report.pdf", |
|
mime="application/pdf" |
|
) |
|
with col2: |
|
if st.button("Clear Analysis ποΈ"): |
|
del st.session_state.analysis_result |
|
st.rerun() |
|
|
|
st.markdown("### π― Nutrition Analysis Report") |
|
st.info(analysis) |
|
|
|
def render_sidebar(client: Groq): |
|
"""Sidebar upload and processing functionality""" |
|
with st.sidebar: |
|
st.subheader("Meal Image Analysis") |
|
uploaded_file = st.file_uploader( |
|
"Upload Food Image", |
|
type=ALLOWED_FILE_TYPES, |
|
help="Upload clear photo of your meal for analysis" |
|
) |
|
|
|
if not uploaded_file: |
|
return |
|
|
|
try: |
|
st.image(Image.open(uploaded_file), caption="Uploaded Meal Image") |
|
except Exception as e: |
|
st.error(f"Invalid image file: {str(e)}") |
|
return |
|
|
|
if st.button("Analyze Meal π½οΈ", use_container_width=True): |
|
with st.spinner("Analyzing nutritional content..."): |
|
if img_data := process_image(uploaded_file): |
|
analysis = generate_ai_analysis(client, *img_data) |
|
if analysis: |
|
st.session_state.analysis_result = analysis |
|
st.rerun() |
|
|
|
|
|
|
|
|
|
def main(): |
|
"""Main application controller""" |
|
client = initialize_groq_client() |
|
logo_b64 = get_logo_base64() |
|
|
|
render_main_content(logo_b64) |
|
render_sidebar(client) |
|
|
|
if __name__ == "__main__": |
|
main() |