File size: 4,656 Bytes
b4c04de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4978775
b4c04de
 
 
 
4978775
 
 
 
b4c04de
4978775
 
 
 
 
 
b4c04de
 
 
 
 
 
 
 
 
 
 
4978775
b4c04de
 
 
 
 
 
 
 
 
 
 
 
 
4978775
b4c04de
4978775
b4c04de
 
 
 
 
 
 
 
4978775
b4c04de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import streamlit as st
import os
from dotenv import load_dotenv
from agents import ResearchAgents
from data_loader import DataLoader

load_dotenv()

# Move set_page_config() to be the first Streamlit command.
st.set_page_config(
    page_title="Autogen Agent",
    page_icon="⚑",
    initial_sidebar_state="expanded"
)

# Updated Custom CSS: Set professional type text styling
custom_css = """
<style>
    body {
        background-color: #f5f5f5;
        font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
        color: #ffffff;
        font-size: 16px;
        line-height: 1.6;
    }
    h1, h2, h3, h4, h5, h6 {
        font-weight: 600;
        color: #ffffff;
    }
    .css-18e3th9, .css-1d391kg {
        color: #ffffff;
    }
    .stButton>button {
        background-color: #4a90e2;
        color: #ffffff;
        border-radius: 5px;
        border: none;
    }
    .sidebar .sidebar-content {
        background-color: #ffffff;
    }
    .stMarkdown, .css-1d391kg {
        color: #ffffff;
    }
</style>
"""
st.markdown(custom_css, unsafe_allow_html=True)

# Streamlit UI Title
st.title("πŸ“š Virtual Research Assistant")

num_results = 5
source_choice = st.sidebar.multiselect("Select Data Sources", options=["ArXiv", "Google Scholar"], default=["ArXiv"])
# Sidebar with features and footer
with st.sidebar:
    st.divider()
    st.markdown("<h3 style='color: #ffffff;'>Key Features</h3>", unsafe_allow_html=True)
    st.markdown("""
    <ul style='list-style: none; padding: 0; color: #ffffff; text-align: left;'>
        <li style='margin-bottom: 8px;'>πŸ” <strong>Multi-Source Research Retrieval</strong></li>
        <li style='margin-bottom: 8px;'>πŸ€– <strong>Integrated Chatbot Interaction</strong></li>
        <li style='margin-bottom: 8px;'>✨ <strong>Advanced Summarization</strong></li>
        <li style='margin-bottom: 8px;'>πŸ”„ <strong>Automatic Query Expansion & Refinement</strong></li>
        <li style='margin-bottom: 8px;'>πŸ“Š <strong>Visual Data Presentation</strong></li>
    </ul>
    """, unsafe_allow_html=True)
    st.divider()
    st.markdown("<p style='text-align: center; color:#ffffff;'><em>Built with Groq | Autogen</em></p>", unsafe_allow_html=True)

# Retrieve the API key from environment variables
groq_api_key = os.getenv("GROQ_API_KEY")

# Check if API key is set, else stop execution
if not groq_api_key:
    st.error("GROQ_API_KEY is missing. Please set it in your environment variables.")
    st.stop()

# Initialize AI Agents for summarization and analysis
agents = ResearchAgents(groq_api_key)

# Initialize DataLoader for fetching research papers
data_loader = DataLoader()

# Use chat_input instead of text_input for entering the research topic.
query = st.chat_input("Enter a research topic:")

# Trigger the search automatically if a query is provided.
if query:
    with st.spinner("Fetching research papers..."):  # Show a loading spinner
        
        all_papers = []
        # Fetch from selected sources based on sidebar choices
        if "ArXiv" in source_choice:
            arxiv_papers = data_loader.fetch_arxiv_papers(query, limit=num_results)
            all_papers.extend(arxiv_papers)
        if "Google Scholar" in source_choice:
            google_scholar_papers = data_loader.fetch_google_scholar_papers(query)
            all_papers.extend(google_scholar_papers)

        # If no papers are found, display an error message
        if not all_papers:
            st.error("Failed to fetch papers. Try again!")
        else:
            processed_papers = []

            # Process each paper: generate summary and analyze advantages/disadvantages
            for paper in all_papers:
                summary = agents.summarize_paper(paper['summary'])  # Generate summary
                adv_dis = agents.analyze_advantages_disadvantages(summary)  # Analyze pros/cons

                processed_papers.append({
                    "title": paper["title"],
                    "link": paper["link"],
                    "summary": summary,
                    "advantages_disadvantages": adv_dis,
                })

            # Display the processed research papers
            st.subheader("Top Research Papers:")
            for i, paper in enumerate(processed_papers, 1):
                st.markdown(f"### {i}. {paper['title']}")  # Paper title
                st.markdown(f"πŸ”— [Read Paper]({paper['link']})")  # Paper link
                st.write(f"**Summary:** {paper['summary']}")  # Paper summary
                st.write(f"{paper['advantages_disadvantages']}")  # Pros/cons analysis
                st.markdown("---")  # Separator between papers