|
import os |
|
from autogen import AssistantAgent |
|
from dotenv import load_dotenv |
|
|
|
|
|
load_dotenv() |
|
|
|
class ResearchAgents: |
|
def __init__(self, api_key): |
|
self.groq_api_key = api_key |
|
self.llm_config = {'config_list': [{'model': 'llama-3.3-70b-versatile', 'api_key': self.groq_api_key, 'api_type': "groq"}]} |
|
|
|
|
|
self.summarizer_agent = AssistantAgent( |
|
name="summarizer_agent", |
|
system_message="Summarize the retrieved research papers and present concise summaries to the user, JUST GIVE THE RELEVANT SUMMARIES OF THE RESEARCH PAPER AND NOT YOUR THOUGHT PROCESS.", |
|
llm_config=self.llm_config, |
|
human_input_mode="NEVER", |
|
code_execution_config=False |
|
) |
|
|
|
|
|
self.advantages_disadvantages_agent = AssistantAgent( |
|
name="advantages_disadvantages_agent", |
|
system_message="Analyze the summaries of the research papers and provide a list of advantages and disadvantages for each paper in a pointwise format. JUST GIVE THE ADVANTAGES AND DISADVANTAGES, NOT YOUR THOUGHT PROCESS", |
|
llm_config=self.llm_config, |
|
human_input_mode="NEVER", |
|
code_execution_config=False |
|
) |
|
|
|
def summarize_paper(self, paper_summary): |
|
"""Generates a summary of the research paper.""" |
|
summary_response = self.summarizer_agent.generate_reply( |
|
messages=[{"role": "user", "content": f"Summarize this paper: {paper_summary}"}] |
|
) |
|
return summary_response.get("content", "Summarization failed!") if isinstance(summary_response, dict) else str(summary_response) |
|
|
|
def analyze_advantages_disadvantages(self, summary): |
|
"""Generates advantages and disadvantages of the research paper.""" |
|
adv_dis_response = self.advantages_disadvantages_agent.generate_reply( |
|
messages=[{"role": "user", "content": f"Provide advantages and disadvantages for this paper: {summary}"}] |
|
) |
|
return adv_dis_response.get("content", "Advantages and disadvantages analysis failed!") |
|
|