File size: 6,816 Bytes
966ae59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
'''
@File       :   ImageReward.py
@Time       :   2023/01/28 19:53:00
@Auther     :   Jiazheng Xu
@Contact    :   [email protected]
@Description:   ImageReward Reward model.
* Based on CLIP code base and improved-aesthetic-predictor code base
* https://github.com/openai/CLIP
* https://github.com/christophschuhmann/improved-aesthetic-predictor
'''

import os
import torch
import torch.nn as nn
from PIL import Image
from .models.BLIP.blip_pretrain import BLIP_Pretrain
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize

try:
    from torchvision.transforms import InterpolationMode

    BICUBIC = InterpolationMode.BICUBIC
except ImportError:
    BICUBIC = Image.BICUBIC


def _convert_image_to_rgb(image):
    return image.convert("RGB")


def _transform(n_px):
    return Compose([
        Resize(n_px, interpolation=BICUBIC),
        CenterCrop(n_px),
        _convert_image_to_rgb,
        ToTensor(),
        Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
    ])


class MLP(nn.Module):
    def __init__(self, input_size):
        super().__init__()
        self.input_size = input_size

        self.layers = nn.Sequential(
            nn.Linear(self.input_size, 1024),
            # nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(1024, 128),
            # nn.ReLU(),
            nn.Dropout(0.2),
            nn.Linear(128, 64),
            # nn.ReLU(),
            nn.Dropout(0.1),
            nn.Linear(64, 16),
            # nn.ReLU(),
            nn.Linear(16, 1)
        )

        # initial MLP param
        for name, param in self.layers.named_parameters():
            if 'weight' in name:
                nn.init.normal_(param, mean=0.0, std=1.0 / (self.input_size + 1))
            if 'bias' in name:
                nn.init.constant_(param, val=0)

    def forward(self, input):
        return self.layers(input)


class ImageReward(nn.Module):
    def __init__(self, med_config, device='cpu'):
        super().__init__()
        self.device = device

        self.blip = BLIP_Pretrain(image_size=224, vit='large', med_config=med_config)
        self.preprocess = _transform(224)
        self.mlp = MLP(768)

        self.mean = 0.16717362830052426
        self.std = 1.0333394966054072

    def score_gard(self, prompt_ids, prompt_attention_mask, image):

        image_embeds = self.blip.visual_encoder(image)
        # text encode cross attention with image
        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(self.device)
        text_output = self.blip.text_encoder(prompt_ids,
                                             attention_mask=prompt_attention_mask,
                                             encoder_hidden_states=image_embeds,
                                             encoder_attention_mask=image_atts,
                                             return_dict=True,
                                             )

        txt_features = text_output.last_hidden_state[:, 0, :]  # (feature_dim)
        rewards = self.mlp(txt_features)
        rewards = (rewards - self.mean) / self.std

        return rewards

    def score(self, prompt, image):

        if (type(image).__name__ == 'list'):
            _, rewards = self.inference_rank(prompt, image)
            return rewards

        # text encode
        text_input = self.blip.tokenizer(prompt, padding='max_length', truncation=True, max_length=35,
                                         return_tensors="pt").to(self.device)

        # image encode
        if isinstance(image, Image.Image):
            pil_image = image
        elif isinstance(image, str):
            if os.path.isfile(image):
                pil_image = Image.open(image)
        else:
            raise TypeError(
                r'This image parameter type has not been supportted yet. Please pass PIL.Image or file path str.')

        image = self.preprocess(pil_image).unsqueeze(0).to(self.device)
        image_embeds = self.blip.visual_encoder(image)

        # text encode cross attention with image
        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(self.device)
        text_output = self.blip.text_encoder(text_input.input_ids,
                                             attention_mask=text_input.attention_mask,
                                             encoder_hidden_states=image_embeds,
                                             encoder_attention_mask=image_atts,
                                             return_dict=True,
                                             )

        txt_features = text_output.last_hidden_state[:, 0, :].float()  # (feature_dim)
        rewards = self.mlp(txt_features)
        rewards = (rewards - self.mean) / self.std

        return rewards.detach().cpu().numpy().item()

    def inference_rank(self, prompt, generations_list):

        text_input = self.blip.tokenizer(prompt, padding='max_length', truncation=True, max_length=35,
                                         return_tensors="pt").to(self.device)

        txt_set = []
        for generation in generations_list:
            # image encode
            if isinstance(generation, Image.Image):
                pil_image = generation
            elif isinstance(generation, str):
                if os.path.isfile(generation):
                    pil_image = Image.open(generation)
            else:
                raise TypeError(
                    r'This image parameter type has not been supportted yet. Please pass PIL.Image or file path str.')

            image = self.preprocess(pil_image).unsqueeze(0).to(self.device)
            image_embeds = self.blip.visual_encoder(image)

            # text encode cross attention with image
            image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(self.device)
            text_output = self.blip.text_encoder(text_input.input_ids,
                                                 attention_mask=text_input.attention_mask,
                                                 encoder_hidden_states=image_embeds,
                                                 encoder_attention_mask=image_atts,
                                                 return_dict=True)
            txt_set.append(text_output.last_hidden_state[:, 0, :])

        txt_features = torch.cat(txt_set, 0).float()  # [image_num, feature_dim]
        rewards = self.mlp(txt_features)  # [image_num, 1]
        rewards = (rewards - self.mean) / self.std
        rewards = torch.squeeze(rewards)
        _, rank = torch.sort(rewards, dim=0, descending=True)
        _, indices = torch.sort(rank, dim=0)
        indices = indices + 1

        return indices.detach().cpu().numpy().tolist(), rewards.detach().cpu().numpy().tolist()