Spaces:
Running
Running
File size: 9,702 Bytes
966ae59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
# -*- coding: utf-8 -*-
# Copyright (c) XiMing Xing. All rights reserved.
# Author: XiMing Xing
# Description:
from typing import AnyStr
import pathlib
from collections import OrderedDict
from packaging import version
import torch
from diffusers import StableDiffusionPipeline, SchedulerMixin
from diffusers import UNet2DConditionModel
from diffusers.utils import is_torch_version, is_xformers_available
DiffusersModels = OrderedDict({
"sd14": "CompVis/stable-diffusion-v1-4", # resolution: 512
"sd15": "runwayml/stable-diffusion-v1-5", # resolution: 512
"sd21b": "stabilityai/stable-diffusion-2-1-base", # resolution: 512
"sd21": "stabilityai/stable-diffusion-2-1", # resolution: 768
"sdxl": "stabilityai/stable-diffusion-xl-base-1.0", # resolution: 1024
})
# default resolution
_model2resolution = {
"sd14": 512,
"sd15": 512,
"sd21b": 512,
"sd21": 768,
"sdxl": 1024,
}
def model2res(model_id: str):
return _model2resolution.get(model_id, 512)
def init_StableDiffusion_pipeline(model_id: AnyStr,
custom_pipeline: StableDiffusionPipeline,
custom_scheduler: SchedulerMixin = None,
device: torch.device = "cuda",
torch_dtype: torch.dtype = torch.float32,
local_files_only: bool = True,
force_download: bool = False,
resume_download: bool = False,
ldm_speed_up: bool = False,
enable_xformers: bool = True,
gradient_checkpoint: bool = False,
cpu_offload: bool = False,
vae_slicing: bool = False,
lora_path: AnyStr = None,
unet_path: AnyStr = None) -> StableDiffusionPipeline:
"""
A tool for initial diffusers pipeline.
Args:
model_id (`str` or `os.PathLike`, *optional*): pretrained_model_name_or_path
custom_pipeline: any StableDiffusionPipeline pipeline
custom_scheduler: any scheduler
device: set device
torch_dtype: data type
local_files_only: prohibited download model
force_download: forced download model
resume_download: re-download model
ldm_speed_up: use the `torch.compile` api to speed up unet
enable_xformers: enable memory efficient attention from [xFormers]
gradient_checkpoint: activates gradient checkpointing for the current model
cpu_offload: enable sequential cpu offload
vae_slicing: enable sliced VAE decoding
lora_path: load LoRA checkpoint
unet_path: load unet checkpoint
Returns:
diffusers.StableDiffusionPipeline
"""
# get model id
model_id = DiffusersModels.get(model_id, model_id)
# process diffusion model
if custom_scheduler is not None:
pipeline = custom_pipeline.from_pretrained(
model_id,
torch_dtype=torch_dtype,
local_files_only=local_files_only,
force_download=force_download,
resume_download=resume_download,
scheduler=custom_scheduler.from_pretrained(model_id,
subfolder="scheduler",
local_files_only=local_files_only,
force_download=force_download,
resume_download=resume_download)
).to(device)
else:
pipeline = custom_pipeline.from_pretrained(
model_id,
torch_dtype=torch_dtype,
local_files_only=local_files_only,
force_download=force_download,
resume_download=resume_download,
).to(device)
print(f"load diffusers pipeline: {model_id}")
# process unet model if exist
if unet_path is not None and pathlib.Path(unet_path).exists():
print(f"=> load u-net from {unet_path}")
pipeline.unet.from_pretrained(model_id, subfolder="unet")
# process lora layers if exist
if lora_path is not None and pathlib.Path(lora_path).exists():
pipeline.unet.load_attn_procs(lora_path)
print(f"=> load lora layers into U-Net from {lora_path} ...")
# torch.compile
if ldm_speed_up:
if is_torch_version(">=", "2.0.0"):
pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead", fullgraph=True)
print(f"=> enable torch.compile on U-Net")
else:
print(f"=> warning: calling torch.compile speed-up failed, since torch version <= 2.0.0")
# Meta xformers
if enable_xformers:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
print(
"xFormers 0.0.16 cannot be used for training in some GPUs. "
"If you observe problems during training, please update xFormers to at least 0.0.17. "
"See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
print(f"=> enable xformers")
pipeline.unet.enable_xformers_memory_efficient_attention()
else:
print(f"=> warning: xformers is not available.")
# gradient checkpointing
if gradient_checkpoint:
# if pipeline.unet.is_gradient_checkpointing:
if True:
print(f"=> enable gradient checkpointing")
pipeline.unet.enable_gradient_checkpointing()
else:
print("=> waring: gradient checkpointing is not activated for this model.")
if cpu_offload:
pipeline.enable_sequential_cpu_offload()
if vae_slicing:
pipeline.enable_vae_slicing()
print(pipeline.scheduler)
return pipeline
def init_diffusers_unet(model_id: AnyStr,
device: torch.device = "cuda",
torch_dtype: torch.dtype = torch.float32,
local_files_only: bool = True,
force_download: bool = False,
resume_download: bool = False,
ldm_speed_up: bool = False,
enable_xformers: bool = True,
gradient_checkpoint: bool = False,
lora_path: AnyStr = None,
unet_path: AnyStr = None):
"""
A tool for initial diffusers UNet model.
Args:
model_id (`str` or `os.PathLike`, *optional*): pretrained_model_name_or_path
device: set device
torch_dtype: data type
local_files_only: prohibited download model
force_download: forced download model
resume_download: re-download model
ldm_speed_up: use the `torch.compile` api to speed up unet
enable_xformers: enable memory efficient attention from [xFormers]
gradient_checkpoint: activates gradient checkpointing for the current model
lora_path: load LoRA checkpoint
unet_path: load unet checkpoint
Returns:
diffusers.UNet
"""
# get model id
model_id = DiffusersModels.get(model_id, model_id)
# process UNet model
unet = UNet2DConditionModel.from_pretrained(
model_id,
subfolder="unet",
torch_dtype=torch_dtype,
local_files_only=local_files_only,
force_download=force_download,
resume_download=resume_download,
).to(device)
print(f"load diffusers UNet: {model_id}")
# process unet model if exist
if unet_path is not None and pathlib.Path(unet_path).exists():
print(f"=> load u-net from {unet_path}")
unet.from_pretrained(model_id)
# process lora layers if exist
if lora_path is not None and pathlib.Path(lora_path).exists():
unet.load_attn_procs(lora_path)
print(f"=> load lora layers into U-Net from {lora_path} ...")
# torch.compile
if ldm_speed_up:
if is_torch_version(">=", "2.0.0"):
unet = torch.compile(unet, mode="reduce-overhead", fullgraph=True)
print(f"=> enable torch.compile on U-Net")
else:
print(f"=> warning: calling torch.compile speed-up failed, since torch version <= 2.0.0")
# Meta xformers
if enable_xformers:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
print(
"xFormers 0.0.16 cannot be used for training in some GPUs. "
"If you observe problems during training, please update xFormers to at least 0.0.17. "
"See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
print(f"=> enable xformers")
unet.enable_xformers_memory_efficient_attention()
else:
print(f"=> warning: xformers is not available.")
# gradient checkpointing
if gradient_checkpoint:
# if unet.is_gradient_checkpointing:
if True:
print(f"=> enable gradient checkpointing")
unet.enable_gradient_checkpointing()
else:
print("=> waring: gradient checkpointing is not activated for this model.")
return unet
|